

Bedienungsanleitung für Installation und Betrieb

DOSAControl DCW 120 MF

Mess- und Regelgerät

1-Kanal-Regler, frei programmierbar für folgende Parameter: pH, Redox (ORP), Leitfähigkeit, Temperatur, Trübung, gelöster Sauerstoff, Nitrat und amperometrische Sensoren für Cl₂, ClO₂, O₃, H₂O₂, PAA, Br (mA- und mV-Signal).

DOSATRONIC GmbH Zuppingerstraße 8 · D-88213 Ravensburg Tel.: +49 (0) 751 / 295 12-0 · Fax: +49 (0) 751 / 295 12-190 info@dosatronic.de · www.dosatronic.de

CE

Ref. DOS0001 Rev. 1.1

Technische und preisliche Änderungen sowie Druckfehler vorbehalten DOSAControl DCW 120 MF / Ref. DOS0001 – Rev. 1.1 2013-03-18

DOSATRON MANAGEMENT IN WATER

iC

Inhalt		
1. 1.1 1.2 1.3 1.4	Allgemeines Anwendungen Verwendung dieses Dokumentes Lagerung und Transport Garantie	6 7 7 7
2.	Sicherheit und Umwelt	8
2.1 2.2 2.3 2.4	Gebrauch des Gerätes Benutzer-Voraussetzungen Risiko-Verhütung Recycling und Konformität	8 8 9
3.	Funktionen	10
3.1 3.2 3.3	Spezifikationen Hauptfunktionen Parameter Freies Chlor Aktives Chlor Gesamt-Chlor Chlorit ClO ₂ H ₂ O ₂	10 10 11 11 11 12 12 12 12 12
3.4	BCDMH	13
3.5 3.6 3.7 3.8	DBDMH Freies Brom PAA Ozon	13 13 13 14
3.9	Gelöster Sauerstoff	14
3.10 3.11 3.12 3.13 3.14 3.15 3.16	Trübung Leitfähigkeit Temperatur Salzgehalt pH Redox	14 14 15 15 15 15
3.17 3.18	Nitrat	15 15

DOSATRONIC MANAGEMENT IN WATER

4.	Installation und Anschluss	16
4.1	Installationsbedingung	16
4.2	Wandbefestigung	16
4.3	Anschluss	16
4.4	Anschluss der Stromversorgung	17
4.5	Anschluss des Relais ohne äußere Energieversorgung P2	17
4.6	Anschluss des statischen Relais R1	17
4.7	Anschluss des potentialfreien Relais P1	17
4.8	Anschluss des ISE/pH/Redox-Sensors (Pot-Ref)	18
4.9	Anschluss des +/-2V Sensors (Vin)	18
4.10	Anschluss des 4-20mA Sensors (lin)	18
	Passiver Sensor	18
	2-Draht Aktiv-Sensor	18
	4-Draht Aktiv-Sensor	18
4.11	Anschluss des analogen Ausgangs lout1	19
4.12	Anschluss des analogen Ausgangs lout2	19
4.13	Anschluss des digitalen Eingangs K1	19
	Potentialfreier Schalter	19
	PNP induktiver Sensor	19
5.	Gerät	20
5.1	Eingabefeld	20
5.2	Tastenfeld	21
5.3	Anschlüsse	22
		~ .
6.	Erste Schritte	24
6.1	Parameter-Einstellung	25
6.2	Kontrast-Einstellung	29
6.3	Regier-Sollwert-Konfigurierung	30
6.4 (F	Einstellen des Alarm-Grenzwertes	32
0.5	Kallonerung	34 25
6.6	Ein- und Ausschalten des Regiers und des Alarms	35
7.	Menüstruktur	36
7.1	Menübaum	36
7.2	Navigation	37
	Liste der Modifikationen	37
	Wert	37

DOSATRONIC MANAGEMENT IN WATER

8.	Permanente Anzeige	38
8.1	Übersicht	38
8.2	Status-Symbole	38
8.3	Kontrast-Einstellung	39
8.4	EIN- und AUS-schalten des Reglers	39
-		
9.	Kalibrierung	40
10.	Einstellungs-Menü	41
10.1	Regler	41
	Berechnungs-Untermenü	41
	Dosier-Untermenü	41
	Relais-Untermenü	42
10.2	Alarm	42
	Grenzwert-Untermenü	42
	Relaisaktivierungs-Untermenü	43
	Relais-Untermenü	43
10.3	Sensor	43
10.4	Analoge Ausgänge	44
	Mess-Untermenü	44
	Dosier-Untermenü	44
10.5	Durchfluss-Schalter	45
10.6	Information	45
10.7	Kommunikation	45
10.8	Test	46
	Relais-Untermenü	46
	Analog-Ausgangs-Untermenü	46
	Eingangs-Untermenü	47
11.	Konfigurationsmenü	47
12.	Fehlerbehebung	49
13.	Pflege und Wartung	49
14.	Diagramm zur RC-Beschaltung	50

1. Allgemeines

1.1 Anwendungen

Das Mess-/Regelgerät **DCW 120** ist ein elektronisches Gerät für die Behandlung von Brauchwasser. Es wurde konstruiert und gebaut, um Ihren speziellen Bedarf zu erfüllen.

Seine bemerkenswerte Fähigkeit, sich an verschiedene industrielle Anwendungen anzupassen erlaubt es, ihn in rauen Umgebungen zu installieren, in denen das Regeln der Wasserbehandlung und der Prozess der Regelung sehr kritisch sind.

Zugeschnitten auf die Bedürfnisse des Betreibers, besitzt der **DCW 120** eine breite Spanne geeigneter Sensoren, spezifisch für die Behandlung von Brauchwasser. Es ist ausgestattet mit Alarmfunktionen und Einstellmöglichkeiten für das Regeln der gemessenen Parameter.

Die einfache Bedienbarkeit des **DCW 120** und die bemerkenswert zahlreichen Optionen ermöglichen Ihnen perfektes Regeln und Überwachen der Wasserqualität vor Ort.

In der folgenden Anleitung finden Sie die zur Installation, Betrieb und Wartung Ihres neuen Gerätes notwendigen Informationen.

- Installation
- Spezifikationen
- > Anweisungen für die Inbetriebnahme
- Sicherheitshinweise

Wenn Sie mehr Informationen wünschen oder Probleme auftreten, die in diesem Dokument nicht aufgeführt werden, kontaktieren Sie Ihren Wiederverkäufer oder direkt den technischen Service der DOSATRO-NIC GmbH. Wir werden eine Möglichkeit suchen, um Ihnen zu helfen und Sie von unserer Erfahrung im Bereich der Mess- und Regeltechnik sowie der Wasseraufbereitung profitieren zu lassen.

Kontakt: info@dosatronic.de

1.2 Verwendung dieses Dokumentes

Bitte lesen Sie dieses Dokument vollständig bevor Sie mit Installation, Gebrauch und Inbetriebnahme dieses Gerätes beginnen, damit die Sicherheit des Prozesses, der Anwender und des Gerätes gewahrt wird.

Bitte folgen Sie den Anweisungen, die in diesem Dokument gegeben werden. DOSATRONIC GmbH haftet nicht bei Missachtung der Anweisungen dieser Anleitung.

Um die Lesbarkeit und das Verständnis dieser Anleitung zu verbessern, werden folgende Symbole und Piktogramme verwendet:

- Informationen
- Notwendige Tätigkeiten

Piktographie:

1.3 Lagerung und Transport

Bitte lagern und transportieren Sie den DCW 120 in seiner Originalverpackung, um Schäden zu vermeiden.

Bitte geschützt vor Feuchtigkeit und vor Chemikalieneinwirkung lagern.

Umgebungsbedingungen für Transport und Lagerung:

Temperatur -10°C bis 70°C Luftfeuchtigkeit Maximal 90% nicht kondensierend

1.4 Garantie

Garantie wird im Rahmen unserer Verkaufs- und Lieferbedingungen unter der Voraussetzung gewährt, dass die folgenden Bedingungen erfüllt sind:

Verwendung des Gerätes gemäß Anweisungen in dieser Bedienungsanleitung

Keinerlei Modifikationen des Gerätes, etwa um Eigenschaften zu verändern

Keine unsachgemäße Behandlung

Übereinstimmung mit den elektrischen Sicherheitsbestimmungen

Nach der Inbetriebnahme besteht keine Garantie auf Verschleißteile.

2. Sicherheit und Umwelt

Die von Ihnen ausgeführte Programmierung verändert den Betrieb des Gerätes, weshalb es zwingend erforderlich ist, diese Anleitung vor dem Konfigurieren des Reglers sorgfältig zu lesen. Nur korrekt ausgebildetes Personal darf den Apparat programmieren.

Bitte:

- Lesen Sie diese Bedienungsanleitung vor dem Auspacken, dem Programmieren oder der Inbetriebnahme.
- > Beachten Sie alle Gefahren und empfohlenen Vorsichtsmaßnahmen.

Die Nichtbeachtung dieser Prozeduren kann in ernstem Personen und/oder Sachschaden resultieren.

ALLGEMEINE SICHERHEITSRICHTLINIEN

Gefahr!

In Notfällen sollte das Gerät sofort ausgeschaltet werden! Trennen Sie das Stromnetzkabel von der Stromversorgung!

Beachten Sie beim Installieren stets lokale Bestimmungen! Der Hersteller ist nicht haftbar für jedwede nicht autorisierte Verwendung oder Missbrauch dieses Produktes, die Verletzungen oder Schäden an Personen oder Material zur Folge hat.

Achtung!

Das Gerät muss jederzeit sowohl für den Betrieb als such für die Wartung zugänglich sein. Der Zugang darf in keinerlei Weise versperrt werden.

Der Feeder sollte mit einem Schutz-Gerät gekoppelt sein, das bei fehlendem Durchfluss automatisch die Pumpen abschaltet!

Die Pumpen und das Zubehör dürfen nur von qualifiziertem und autorisiertem Personal gewartet und repariert werden! Lassen Sie immer die Flüssigkeit ab, bevor Sie das Gerät warten! Leeren und spülen Sie vor der Arbeit die Flüssigkeit aus der Pumpe, die mit gefährlichen und / oder unbekannten Chemikalien verwendet wurde!

Lesen Sie stets die Chemikalien-Datenblätter!

Tragen Sie stets Schutzkleidung, wenn Sie mit gefährlichen und / oder unbekannten Chemikalien hantieren!

Das Gerät darf nur von ausgebildeten Technikern betrieben / gewartet werden!

Alle Anschluss-Tätigkeiten dürfen nur ausgeführt werden, wenn das Gerät nicht mit der Hauptstromversorgung verbunden ist!

2.1 Gebrauch des Gerätes

Die **DCW 120** Regler wurden ausgelegt, um die vom Benutzer eingestellten Werte unter Verwendung von für die in dieser Anleitung aufgeführten Verwendungszwecke geeigneten Sensoren und Stellteilen zu messen und zu regeln.

Andere Anwendungen werden als nicht konform erachtet und müssen verboten werden. DOSATRONIC GmbH übernimmt keinerlei Haftung für hieraus resultierende Schäden.

2.2 Benutzer-Voraussetzungen

Der Benutzer stimmt zu, dass ausschließlich hierzu autorisiertes Personal den in dieser Anleitung beschriebenen **DCW 120** Regler bedient. Dies bedeutet, dass die Personen...

- ▶ vertraut mit den Grundanweisungen für Sicherheit in der Industrie und für Unfallverhütung sind.
- ▶ in der Verwendung des Gerätes und seiner Umgebung ausgebildet sind.
- ► in der Lage sind, diese Bedienungsanweisungen, -warnungen und -regeln zu lesen und zu verstehen.

2.3 Risiko-Verhütung

Die Installation und Anschluss des Gerätes darf nur von speziell hierfür ausgebildetem Personal ausgeführt werden. Die Installation muss die Standards und Sicherheitsanforderungen erfüllen!

Vor dem Verändern der Relaisausgänge die Verbindung zur Haupt-Stromversorgung trennen!

Öffnen Sie niemals das Gerät! Wartung und Reparaturen dürfen ausschließlich von autorisiertem und geschultem Personal ausgeführt werden.

Vor dem Verändern der Relaisausgänge die Verbindung zur Haupt-Stromversorgung trennen!

Öffnen Sie niemals das Gerät! Wartung und Reparaturen dürfen ausschließlich von autorisiertem und geschultem Personal ausgeführt werden.

2.4 Recycling und Konformität

Wiederverwertbares Verpackungsmaterial für den Regler **DCW 120** muss gemäß geltendem Recht entsorgt werden.

Elemente aus Papier, Pappe, Plastik oder irgendeinem anderen wiederverwertbaren Material sollte einer passenden Sortierung zugeführt werden.

Gemäß Richtlinie 2002/96/EC zeigt dieses Symbol an, dass seit 12. August 2005 Elektroschrott nicht in normalem Haus- oder Industriemüll entsorgt werden darf. In Übereinstimmung mit geltendem Recht sind Benutzer seit diesem Datum gehalten, ihre Alten Geräte kostenlos zur Entsorgung an den Hersteller zurückzugeben.

Gemäß Richtlinie 2002/95/EC zeigt dieses Symbol an, dass der Regler **DCW 120** so konstruiert wurde, dass die Beschränkung gefährlicher Substanzen eingehalten wurde.

In Übereinstimmung mit der Niederspannungsrichtlinie (2006/95/EC) und der Richtlinie über Elektromagnetische Verträglichkeit (2004/108/EC), zeigt dieses Symbol an, dass das Gerät in Übereinstimmung mit den oben erwähnten Richtlinien ausgelegt wurde.

3. Funktionen

3.1 Spezifikationen

Тур	Spezifikationen	Markierungen		
Übersicht				
Verbrauch	5 W Max.	-		
Stromversorgung	90-240 VAC, 50/60 Hz	-		
Hauptschutz	50 mA rückstellende Sicherung	-		
Betriebstemperatur	-5 °C bis 60 °C	-		
Lagertemperatur	-10 °C bis 70 °C	-		
Feuchtigkeit	Max. 90% nicht kondensierend	-		
Gehäusematerial	ABS	-		
	Höhe : 200 mm(8")	-		
Маве	Breite : 225 mm(9")			
	Tiefe°: 115 mm(4,3")			
Gewicht	800 g	-		
Schutzklasse	IP 65	-		
Display	Graphisches LCD 128x128 hintergrundbeleuchtet blau /	-		
	weiß			
Eingänge	1	1		
	1 Stromeingang 420 mA	lin		
Messeingänge	1 Spannungseingang -2/+2 V	Vin		
	1 potentiometrischer Eingang	Pot/Ref		
Kontrolleingänge	1 digitaler Eingang NO / NC	K1		
Ausgänge	1	1		
	1 Leistungsrelais max. 2A / 250 VAC	P2		
Relais	1 Relais 2 Positionen potentialfrei	P1		
	1 statisches Relais potentialfrei	R1		
Analoge Ausgänge	2 Stromquellen 0/420 mA max. 500 Ω	lout 1		
		lout 2		
Elektrische Sicherung	5 A Sicherung	F2		
Leistungsrelais				
Kommunikation				
RS-485	1 Schnittstelle RS-485 mit Anschluss und Polarisierung			

3.2 Hauptfunktionen

Funktion	Spezifikationen
Regler	Unidirektionaler Regler P.I.D.
	PWM Relais
Aktuator Typ	PFM Relais
	4-20mA
	Hoher und niedriger Grenzwert
Alarme	Überdosierungstimeout
	Sensor-Fehler
Worpung	Ein- und Ausgangsstatus
wannung	Betriebszustand
Wartung	Sensorkalibrierung

3.3 Parameter

Sensoren mit dem Vermerk "Client" sind anpassbar.

Freies Chlor

Ref	Schnittstelle	Bereich
Client	-	-
CL2.1		
CL2.1 N	02V	0 20ppm
CL2.1 MA 2	4 20mA	0 2ppm
CL4.1		
CL4.1 H	02V	0 2ppm
CL4.1 N	02V	0 20ppm
CL4.1 Up	0 +2V	0 20ppm
CL4.1 L200	02V	0 200ppm
CL4.1 MA05	4 20mA	0 0.5ppm
CL4.1 MA2	4 20mA	02ppm
CL4.1 MA5	4 20mA	05ppm
CL4.1 MA10	4 20mA	0 10ppm
CL4.1 MA20	4 20mA	0 20ppm
CL4.1 MA200	4 20mA	0 200ppm
CS2.3		
CS2.3 Hun	02V	0 2ppm
CS2.3 N	02V	0 20ppm
CS2.3 Up	0 +2V	0 20ppm
CS2.3 MA2	4 20mA	0 2ppm
CS2.3 MA5	4 20mA	0 5ppm
CS2.3 MA10	4 20mA	0 10ppm
ASx		
AS3 N	02V	0 10ppm
AS3 Up	0 +2V	0 10ppm
AS2 N	02V	0 10ppm
AS2 Up	0 +2V	0 10ppm
ASx MA2	4 20mA	0 2ppm
Asx MA5	4 20mA	0 5ppm

Aktives Chlor

Ref	Schnittstelle	Bereich
Client	-	-
CC1		
CC1 Hun	02V	0 2ppm
CC1 N	02V	0 20ppm
CC1 Up	0 +2V	0 20ppm
CC1 MA2	4 20mA	0 2ppm
CC1 MA5	4 20mA	05ppm
CC1 MA10	4 20mA	0 10ppm

Gesamt-Chlor

Ref	Schnittstelle	Bereich
Client	-	-
CP2.1		
CP2.1 HUn	02V	0 2ppm
CP2.1 N	02V	0 20ppm
CP2.1 MA2	4 20mA	0 2ppm
CP2.1 MA5	4 20mA	0 5ppm
CP2.1 MA10	4 20mA	0 10ppm

Chlorit

Ref	Schnittstelle	Bereich	
Client	-	-	
MST1			
MST1-N-A12n	02V	0 2ppm	

CIO_2

Ref	Schnittstelle	Bereich
Client	-	-
ASx		
AS3 N	AS3 N	AS3 N
AS3 Up	AS3 Up	AS3 Up
AS2 N	AS2 N	AS2 N
AS2 Up	AS2 Up	AS2 Up
AS2 MA2	AS2 MA2	AS2 MA2
AS2 MA5	As2 MA5	As2 MA5
AS3 MA2	AS3 MA2	AS3 MA2
AS3 MA5	As3 MA5	As3 MA5
CD7		
CD7 H	02V	0 2ppm
CD7 N	02V	0 20ppm
CD7 L	02V	0 200ppm
CD7 MA05	4 20mA	0 0,5ppm
CD7 MA2	4 20mA	0 2ppm
CD7 MA5	4 20mA	0 5ppm
CD7 MA10	4 20mA	0 10ppm
CD7 MA20	4 20mA	0 20ppm

H_2O_2

Ref	Schnittstelle	Bereich
Client	-	-
WP7		
WP7 Hun	02V	0 200ppm
WP7 Un	02V	0 2000ppm
WP7 MA-CC	4 20mA	0 200ppm
WP7 MA-D	4 20mA	0 500ppm
WP7 MA-M	4 20mA	0 1000ppm
WP7 MA-MM	4 20mA	0 2000ppm
WP7 MA-XM	4 20mA	010000ppm

Technische und preisliche Änderungen sowie Druckfehler vorbehalten DOSAControl DCW 120 MF / Ref. DOS0001 – Rev. 1.1 2013-03-18

3.4 BCDMH

Ref	Schnittstelle	Bereich
Client	-	-
BR		
BR2	4 20mA	0 2ppm
BR10	4 20mA	0 10ppm
BR20	4 20mA	0 20ppm
BR MA2	4 20mA	0 2ppm
BR MA10	4 20mA	0 10ppm
BR MA20	4 20mA	0 20ppm

3.5 DBDMH

Ref	Schnittstelle	Bereich
Client	-	-
BR		
BR2	4 20mA	0 2ppm
BR10	4 20mA	0 10ppm
BR20	4 20mA	0 20ppm
BR MA2	4 20mA	0 2ppm
BR MA10	4 20mA	0 10ppm
BR MA20	4 20mA	020ppm

3.6 Freies Brom

Ref	Schnittstelle	Bereich
Client	-	-
BR		
BR2	4 20mA	0 2ppm
BR10	4 20mA	0 10ppm
BR20	4 20mA	0 20ppm
BR MA2	4 20mA	0 2ppm
BR MA10	4 20mA	0 10ppm
BR MA20	4 20mA	0 20ppm

3.7 PAA

Ref	Schnittstelle	Bereich
Client	-	-
PES7		
PES7 H	02V	0 200ppm
PES7 N	02V	0 2000ppm
PES7 L	02V	0 20000ppm
PES7 MA D	4 20mA	0 500ppm
PES7 MA M	4 20mA	0 1000ppm
PES7 MA MM	4 20mA	0 2000ppm
PES7 MA XM	4 20mA	0 10000ppm
PES7 MA XXM	4 20mA	0 20000ppm
P9		
P9 L	02V	0 2000ppm
P9 N	02V	0 20000ppm

Technische und preisliche Änderungen sowie Druckfehler vorbehalten DOSAControl DCW 120 MF / Ref. DOS0001 – Rev. 1.1 2013-03-18

3.8 Ozon

Ref	Schnittstelle	Bereich
Client	-	-
OZ7		
OZ7 H	02V	0 1ppm
OZ7 N	02V	0 10ppm
OZ7 MA02	4 20mA	00,2ppm
OZ7 MA05	4 20mA	0 0,5ppm
OZ7 MA2	4 20mA	0 2ppm
OZ7 MA5	4 20mA	0 5ppm
OZ7 MA10	4 20mA	0 10ppm

3.9 Gelöster Sauerstoff

Ref	Schnittstelle	Bereich
Client	-	-
DOSAFluor	RS 485	0 20ppm

3.10 PHMB

Ref	Schnittstelle	Bereich
Client	-	-
PHMB	4 20mA	0 100ppm

3.11 Trübung

Ref	Schnittstelle	Bereich
Client	-	-
DOSATurb		
DOSATurb	RS 485	0 10000FTU
DOSATurb	RS 485	0 400NTU

3.12 Leitfähigkeit

Ref	Schnittstelle	Bereich
Client	-	-
DOSACon		
DOSACon	4 20mA	05mS/cm
DOSACon	4 20mA	0 10mS/cm
DOSACon	4 20mA	0 20mS/cm
DOSACon	4 20mA	0 50mS/cm
DOSACon	4 20mA	0100mS/cm
DOSACon	4 20mA	0 2000mS/cm

3.13 Temperatur

Ref	Schnittstelle	Bereich
Client	-	-
DOSATemp	4 20mA	-5 45°C

3.14 Salzgehalt

Ref	Schnittstelle	Bereich
N.N.	4 20mA	3 75g/l

3.15 pH

Ref	Schnittstelle	Bereich
Client	-	-
рН		
рН	Potentiometrisch	1 12

3.16 Redox

Ref	Schnittstelle	Bereich
Client	-	-
Redox		
Redox	-	-

3.17 Fluorid

Ref Schnittstelle		Bereich
FLEP	Potentiometrisch	0.01 100ppm

3.18 Nitrat

Ref	Schnittstelle	Bereich
UV-Sensor	RS 485	0 50ppm

4. Installation und Anschluss

4.1 Installationsbedingung

Um die Sicherheit der Benutzer und den ordentlichen Betrieb Ihres Gerätes sicherzustellen beachten Sie bitte die folgenden Installationsvorgaben:

- Montieren Sie das Gerät an einem trockenen Ort
- Das Gerät muss geschützt vor Regen, Frost und direktem Sonnenlicht sein.
- Die Umgebungstemperatur muss zwischen 0 und 50°C ohne Kondensation liegen
- Wählen Sie einen vibrationsfreien Installationsort, auf einem sauberen und ebenen Untergrund.

Im Falle einer Nichtbeachtung dieser Anweisungen:

- Kann das Gerät beschädigt werden
- Können Messungen gestört werden
- Wird die Garantie nicht zugesichert

4.2 Wandbefestigung

Vor dem Montieren und dem Anschließen der elektrischen Anschlüsse Stromzufuhr unterbrechen!

Schutzklasse IP 65 wird garantiert, wenn die Abdeckung geschlossen ist und wenn die Kabelanschlussbuchsen mit dem Kabeldurchmesser übereinstimmen.

4.3 Anschluss

Elektrische Anschlüsse müssen gemäß Standards und von autorisiertem Personal ausgeführt werden!

Eine 30 mA RCD muss installiert sein!

Vor dem Anschließen der Verbindungen Hauptstromzufuhr trennen!

Der **DCW 120** muss unter Verwendung des Eintrags "Remote Control" ("Fernbedienung") K1 genauestens hinsichtlich Traffic-Indikator kontrolliert werden.

Das Gerät wird durch eine 50mA Sicherung und einen Varistor gegen Stromstöße von 275V geschützt

Der angetriebene Relais Ausgang P2 ist außerdem durch eine Glassicherung geschützt.

Bezeichnung	Ref.	Bestimmung
F2	FUS5X20R5000	Schnelle Sicherung 5A 5X20 Glas

Im Falle einer durchgebrannten Sicherung prüfen Sie, ob die Hauptplatine nicht durchgebrannt ist. Falls doch ist ein Austausch der gesamten Karte unerlässlich. Falls der Varistor beschädigt ist, senden Sie das Gerät bitte zu unserer technischen Expertise zurück.

4.4 Anschluss der Stromversorgung

Das Gerät hat ein Universal-Netzteil zum Anschließen an eine Stromversorgung von 100 bis 240VAC 50/60Hz.

Verwenden Sie ein dreiadriges Kabel mit 2,5 mm² um den Stromanschluss auszuführen.

Entfernen Sie 7 mm der Isolierung.

Dann stecken Sie das Kabelende durch die Dichtschraube der Kabeldurchführung. Verdrahten Sie die Phase L1 (29) und den Nullleiter N (39) mit dem Block X1 der Klemmleiste. Das Erdungskabel an den Bolzen PE unter Verwendung einer Kabelendhülse M4. Ziehen Sie die Dichtschraube an. 50/60Hz.

Das Gerät hat keinen eigenen An-/Aus-Schalter. Wird es mit dem Stromnetz verbunden schaltet es direkt ein.

4.5 Anschluss des Relais mit äußerer Energieversorgung P2

Der selbst mit Strom versorgte Relais-Ausgang wird verwendet, um ein Dosiergerät oder den Alarm mittels Hauptstromnetz zu steuern.

- Entfernen Sie 7 mm der Isolierung.
- Stecken Sie das Kabel in eine 3-Punkt-Kabeldurchführung.
- ► Verdrahten Sie die Phase mit (26) und Neutral mit (27) der Klemmleiste P2.
- ► Verdrahten Sie die Erde mit PE (28) der Klemmleiste P2
- ► Ziehen Sie die Dichtschraube der Kabeldurchführung an, um sie abzudichten.

4.6 Anschluss des statischen Relais R1

Statisches Relais (Optokoppler).

- Entfernen Sie 7 mm der Isolierung.
- ► Stecken Sie das Kabel in eine 2-Punkt-Kabeldurchführung.
- ► Verbinden Sie (26) und (27) der Klemmleiste R1.
- ► Ziehen Sie die Dichtschraube der Kabeldurchführung an, um sie abzudichten.

4.7 Anschluss des potentialfreien Relais P1

Der Ausgang des potentialfreien Relais hat zwei Kontakt-Positionen (NO = normally open / normal offen und NC = normally closed / normal geschlossen).

- Entfernen Sie 7 mm der Isolierung.
- Stecken Sie das Kabel in eine 2-Punkt-Kabeldurchführung.
- ► Verbinden Sie es mit (23 = R),(24 = C) und (25 = T) gemäß gewünschtem Kontakt (NO oder NC).
- ► Ziehen Sie die Dichtschraube der Kabeldurchführung an, um sie abzudichten.

4.8 Anschluss des ISE/pH/Redox-Sensors (Pot-Ref)

Das Gerät hat einen externen BNC-Anschluss.

► In BNC-Verbindung einstöpseln.

4.9 Anschluss des +/-2V Sensors (Vin)

- Entfernen Sie 7 mm der Isolierung.
- Stecken Sie das Kabel in eine 4-Punkt-Kabeldurchführung Kabeltyp: AK-CL M12
 Verbinden Sie mit (3) die Signale grün
 Verbinden Sie mit (5) die Referenz gelb Schwarz
 Verbinden Sie mit (6) die negative Stromversorgung -12V weiß Blau
 Verbinden Sie mit (7) die positive Stromversorgung +12V braun Weiß
- ► Ziehen Sie die Dichtschraube der Kabeldurchführung an, um sie abzudichten.

4.10 Anschluss des 4-20mA Sensors (lin)

Der 4-20mA-Eingang wird verwendet zum Anschluss von Sensoren, passiv oder aktiv, abhängig von der ausgeführten Verdrahtung.

Passiver Sensor

- Entfernen Sie 7 mm der Isolierung.
- Stecken Sie das Kabel in eine 2-Punkt-Kabeldurchführung.
- ► Verbinden Sie mit (4) das negativ gepolte Kabel
- Verbinden Sie mit (7) oder (8) das positiv gepolte Kabel gemäß der Sensor-Stromversorgung (12V oder 24V)
- ► Ziehen Sie die Dichtschraube der Kabeldurchführung an, um sie abzudichten.

2-Draht Aktiv-Sensor

- Entfernen Sie 7 mm der Isolierung.
- Stecken Sie das Kabel in eine 2-Punkt-Kabeldurchführung.
- ► Verbinden Sie mit (4) das positiv gepolte Kabel
- ► Verbinden Sie mit (5) das negativ gepolte Kabel
- ► Ziehen Sie die Dichtschraube der Kabeldurchführung an, um sie abzudichten.

4-Draht Aktiv-Sensor

- Entfernen Sie 7 mm der Isolierung.
- Stecken Sie das Kabel in eine 4-Punkt-Kabeldurchführung.
- ► Verbinden Sie mit (4) das positiv gepolte Kabel
- ► Verbinden Sie mit (5) das negativ gepolte Kabel
- ► Verbinden Sie mit (5) das gemeinsame Kabel der Stromversorgung
- Verbinden Sie mit (7) oder (8) das positiv gepolte Kabel gemäß der Sensor-Stromversorgung (12V oder 24V)
- ► Ziehen Sie die Dichtschraube der Kabeldurchführung an, um sie abzudichten.

4.11 Anschluss des analogen Ausgangs lout1

Dieser Analogausgang 0/4-20mA ist verwendet, um die gemessenen Parameter zu übermitteln.

- Entfernen Sie 7 mm der Isolierung.
- Stecken Sie das Kabel in eine 2-Punkt-Kabeldurchführung.
- ► Verbinden Sie mit (15) das positiv gepolte Kabel
- ► Verbinden Sie mit (16) das negativ gepolte Kabel
- ► Ziehen Sie die Dichtschraube der Kabeldurchführung an, um sie abzudichten.

4.12 Anschluss des analogen Ausgangs lout2

Dieser 0/4-20mA-Analogausgang kann die Wertabhängige variable Dosierung durchleiten.

- Entfernen Sie 7 mm der Isolierung.
- Stecken Sie das Kabel in eine 2-Punkt-Kabeldurchführung.
- Verbinden Sie mit (9) das positiv gepolte Kabel
- Verbinden Sie mit (10) das negativ gepolte Kabel
- ▶ Ziehen Sie die Dichtschraube der Kabeldurchführung an, um sie abzudichten.

4.13 Anschluss des digitalen Eingangs K1

Dieser Eingang wird verwendet, um einen Dosierstopp zu erzwingen

 Es ist zwingend erforderlich, das Steuerkabel mir der Anzeige f
ür den Durchflussstopp zu verbinden

Die Standrichtung des Schalters kann konfiguriert werden.

Potentialfreier Schalter

- Entfernen Sie 7 mm der Isolierung.
- Stecken Sie das Kabel in eine 2-Punkt-Kabeldurchführung.
- ► Verbinden Sie mit (13) das positiv gepolte Kabel
- ► Verbinden Sie mit (14) das negativ gepolte Kabel
- ► Ziehen Sie die Dichtschraube der Kabeldurchführung an, um sie abzudichten.

PNP induktiver Sensor

- Entfernen Sie 7 mm der Isolierung.
- Stecken Sie das Kabel in eine in a 3-Punkt-Kabeldurchführung.
- ► Verbinden Sie mit (13) das BN Kabel
- Verbinden Sie mit (14) das BK Kabel
- ► Verbinden Sie mit (20) das BU Kabel
- Eziehen Sie die Dichtschraube der Kabeldurchführung an, um sie abzudichten.

5. Gerät

5.1 Eingabefeld

MREG MALR 1002 10.712	Esc CK
Set point: 0.400mg/l Dosage: 0.00% Input: 8.278mA	Menu Calibration

DOSAControl DCW 120

5.2 Tastenfeld

	MENU	Zugang zum CONFIGURATION und SETTING Menü. (Konfiguration und Einstellungen)
	CALIBRATION	Messwertkalibrierung
START / STOP	start/stop	Aktivieren und Deaktivieren von Regeln und Alarm Alarme quittieren
ESC	ESC	Nullstellen Rückkehr zu einem vorhergehenden Menüpunkt
Ок	OK	Validierung Enter / Eingabe
(+)	PLUS	Navigation zum nächsten Programmpunkt Einen Wert erhöhen Kontrast einstellen.
	MINUS	Navigation zum vorhergehenden Programmpunkt Einen Wert verringern Kontrast einstellen.

5.3 Anschlüsse

DOSATRONIC MANAGEMENT IN WATER

	Bezeichnung	Pin- Name	Nr. des Pins	Pol.	Funktion
-	Potentiometrischer	Pot	1	Pot	pH/ISE/Redox Sensor
	Eingang	Ref	2	Ref	
o	Spannungseingang	Vin	3		+/- 2V Sensor
ens	Stromeingang	lin	4	+	4-20mA Sensor
esss	Sensor Versorgung	COM	5	-	
ž		-12	6	-12V	80 mA, max.
		+12	7	+12V	(80 mA, max.)
		+24	8	+24V	(80 mA, max.)
a e	0-4/20mA Ausgang	lout 1	15	+	Messwertausgang
0m/ äng			16	-	
'4-2 usgå	0-4/20mA Ausgang	lout 2	9	+	Dosierwertausgang
9 A			10	-	
. L	CAN Bus	CAN	11	CAN-H	
Kommuni kation			12	CAN-L	
	RS485 Bus	RS485	17	AA' -	
			18	BB' +	
-	Stromversorgungs-	PWR	19	24V	Strom für die Kommunikationsgeräte
	ausgang 24VDC		20	0V	Strom für den induktiven Sensor K1
	Digitaleingang	K1	13	+	Durchflussschalter
			14	-	
	R1 Relais	R1	21		Dosierung,
			22		
s für larn	P1 Relais	P1	23	R	Dosierung,
sobr & A			24	С	Alarm
mar ren			25	Т	-
omi	P2 Relais	P2	26	L	Dosierung, 250 VAC, 5 A
ΥĞ			27	N	Alarm
			28	PE	-
	Stromversorgung	X1	29	L1	, 260 VAC, 50/60 Hz
			30	N	1
			31	PE	1
				PE	Zentraler Erdungspunkt

6. Erste Schritte

Wenn Sie alle elektrischen Anschlüsse und die Anschlüsse der verschiedenen Mess- und Regelkomponenten ausgeführt haben, sind sie bereit, Ihren Regler in Betrieb zu nehmen.

Die Inbetriebnahme der Einheit dient dazu, die Grundeinstellungen vorzunehmen, um die Entwicklung des Prozesses abzuschließen.

- Umgebungseinstellungen (Typ, Kontrast, Sprache ...)
- Programmierung der Regel-Anweisungen
- ► Kalibrierung der Sensoren
- ▶ Programmierung der Sicherheitsalarme

Einschalten.

Prüfen Sie, ob Ihre Anlage ordnungsgemäß angeschlossen wurde und alles funktioniert, und dass die anderen Komponenten Ihres Systems nicht beeinträchtigt worden sind.

Der Regler **DCW 120** beginnt nach dem Einschalten automatisch mit der Behandlung und dem Dosieren der Chemikalien. Einzig der Benutzer entscheidet, ob der Einschaltvorgang fortgeführt oder abgebrochen wird, nachdem er sich versichert hat, dass die Anlage wie benötigt eingestellt ist.

Nach dem Einschalten sind die durch die Grundeinstellungen voreingestellten Messparameter wie folgt:

Parameter Typ	Freies Chlor
Sensor Schnittstelle	4-20mA
Messbereich	010ppm

6.1 Parameter-Einstellung

Parameter- und Sensor-Einstellung im Konfigurations-Menü ("Configuration").

Verwenden Sie PLUS und MINUS um das Untermenü Type auszuwählen

Drücken Sie OK um den von Ihnen gewählten

Falls ein Sensor verwendet wird, der nicht in der vorhandenen Sensorliste aufgeführt wird, ist es möglich, einen neuen Sensor zu definieren indem man den "**Client**" auswählt und den Minimal- und Maximalwert seines Messwertbereiches eingibt sowie die **Einheit** und die Schnittstelle.

Sprache:	Deutsch	*
Typ:	þН	-
Sensor	рН 1 12	*
min: <u>+1,</u> 0) +	
max: <u>+12,0</u>		
Schnittste	lle: Pot	-
Initialisieru	ing: 🕒 RES	ET

Drücken Sie 5s.

Markieren Sie den Type-Block

Editieren

Auswählen

Technische und preisliche Änderungen sowie Druckfehler vorbehalten DOSAControl DCW 120 MF / Ref. DOS0001 – Rev. 1.1 2013-03-18

Bestätigen

Markieren Sie den **Sensor**-Block

Editieren.

Wählen Sie Client.

Bestätigen

Wählen Sie "max field"

Editieren

Technische und preisliche Änderungen sowie Druckfehler vorbehalten DOSAControl DCW 120 MF / Ref. DOS0001 – Rev. 1.1 2013-03-18

6.2 Kontrast-Einstellung

Von der PERMANENT-Anzeige aus.

Stellen Sie den neuen Wert ein

Blättern Sie durch die Ziffern

Bestätigen

Zur PERMANENT-Anzeige zurückkehren

Verwenden Sie die **PLUS**- und **MINUS**-Taste um den Kontrast zu verändern

6.3 **Regler-Sollwert-Konfigurierung**

Ein Programmierfehler kann schädlich für die menschliche Gesundheit und für die Sicherheit Ihrer Prozess-Geräte sein. Wenn Sie im Zweifel über die durchzuführende Dosierung sind kontaktieren Sie Fachpersonal vor jeder Programmierung.

Ein Programmierfehler kann eine Überdosierung der Chemikalien verursachen und so die Umwelt stören.

Die Sollwerteinstellung wird im Control-Menü ausgeführt.

Drücken Sie MENU.

Scrollen Sie zu Control.

Drücken Sie OK.

Editieren Sie den Wert

Bestätigen Sie

Kehren Sie zu Menu zurück

Kehren Sie zur Permanent-Anzeige zurück

6.4 Einstellen des Alarm-Grenzwertes

Drücken Sie MENU.

Scrollen Sie zu **Alarm**

Drücken Sie **OK**

Editieren Sie den oberen Grenzwert

Verwenden Sie die **OK** und **ESC** Tasten um Ziffern auszuwählen.

n Alarm Grenzwerte 23 Oberer Gi <mark>9,09 🔶</mark> pH Unterer G <mark>2,90 🔶</mark> pH Hyst.: 2,00 🗢 pH /erzögeru-2 ¢s Alarm 'n Grenzwerte Oberer Gr<mark>9,09 🔶</mark> pH Unterer G <mark>02</mark>2<mark>0 🖨</mark> pH 2,00 🗢 pH Hyst.: /erzögeru-2 **♦** s ES Alarm ЭK Menü ESC

Bestätigen.

Unteres Grenzfeld auswählen

Editieren

Bestätigen.

Zum Menu zurückkehren

Zur Permanent-Anzeige zurückkehren

6.5 Kalibrierung

Die Sensorkalibrierung ist wichtig für einen korrekten Behandlungsprozess. Mangelhafte Kalibrierung kann schädlich für die menschliche Gesundheit und gefährlich für Ihre Prozess-Geräte sein. Wenn Sie im Zweifel über die durchzuführende Bedienung oder die gemeldeten Fehler in der Kalibrierung sind kontaktieren Sie Fachpersonal vor jedem Kalibrierungshinweis.

Inkorrekte Kalibrierung kann eine Überdosierung der Chemikalien verursachen und so die Umwelt stören.

Das Gerät hat eine Schnelltaste, um in die Anzeige Kalibrierung zu gelangen.

Automatische Rückkehr zu Permanent.

6.6 Ein- und Ausschalten des Reglers und des Alarms

Sobald die vorhergehenden Programme beendet sind, ist das Regelgerät bereit zum Starten.

Bevor Sie mit dem Regeln beginnen, stellen Sie sicher, dass die verschiedenen Sicherheitseinstellungen und Ausführungen in dieser Anleitung erfüllt werden.

Um den Regler einzuschalten drücken Sie die START/STOP-Taste.

7. Menüstruktur

Die Programmierung besteht aus einer einzelnen Ebene. Eine Berührung zum direkten Zugang zur Kalibrierung verhindert das Risiko der De-Programmierung seines Betriebes; dies, um die Sicherheit von Mensch und Maschine zu gewährleisten.

Ein versteckter Level dient zum Definieren des Messtyps.

- > Menü KALIBRIERUNG: Kalibrieren des Messsensors
- > Menü EINSTELLUNGEN: Einstellung des Alarms, Sollwert regeln,
- > Menü KONFIGURATION: Auswahl Parameter, Sensortyp, ...

7.1 Menübaum

	Menü	Untermenü	Funktion	
Kalıbrie- Rung	Kalibrierung		Kalibieren des Messwertes	
	Regeln	Rechnen	Einstellen von P.I.D.	
		Dosieren	Dosiermethode	
		Relais	Dosierrelais	
	Alarm	Grenzwert	Alarmverzögerung und Grenzwerte	
7		Aktivierung	Bedingung der Alarmaktivierung	
GEI		Relais	Alarmrelais	
NI	Sensor		Einschaltverzögerung	
TT	Analogausgang	Messen	Bereich	
STE		Dosieren	Bereich	
IN	Durchflussschalter		Stillstand und Verzögerung	
ш	Information		Version, Typ, Sprache	
	Kommunikation		Protokoll, Geschwindigkeit	
	Test	Relais	Relaisauslösung	
		Ausgänge	0-4/20mA-Ausgang	
		Eingänge	Inputstatus und Wert	
KONFIGURATION	Konfiguration		Auswahl von Sprache, Parametertyp und verwendetem Sensor	

7.2 Navigation

SETTING und CONFIGURATION (Einstellungen uns Konfiguration) sind zugänglich durch Drücken von Ein einfacher Druck, um in das SETTING (Einstellungs-) Menü zu gelangen und ein langer Druck, um das CONFIGURATION (Konfigurations-) Menü zu öffnen. .

CALIBRATION (Kalibrierungs-) Zugang durch Drücken von

Das **SETTING** (Einstellungs-) Menü besteht aus einer Icon-Liste. Um das gewünschte Menü auszuwählen drücken Sie und bestätigen Sie Ihre Wahl durch Drücken von OK.

Liste der Modifikationen

8. Permanente Anzeige

Diese Anzeige erlaubt Ihnen, am Controller abzulesen:

- Den Messwert.
- > Den Sollwert.
- > Den exakten Wert.
- > Den Parametertyp.
- > Den Status der Kontrollrelais, die der Dosierung und dem Alarm zugewiesen sind.
- > Verschiedene Alarme wie Icons und Meldungen.

8.1 Übersicht

8.2 Status-Symbole

Icon	Bedeutung	Einstellort	Veränderbar	Aktion
\mathbf{X}	Einschaltverzögerung	Sensormenü	Temps	Reglerstopp
Т,	Durchfluss gestoppt	Schalter Durchflussmenü	Stand NO/NC	Reglerstopp
2	Wartung des Sensors	Fix		Kalibrierung unmöglich
4	Niedriger Grenzwert	Alarmmenü	Wert	Alarmrelais
;: *	Hoher Grenzwert	Alarmmenü	Wert	Alarmrelais
	Überdosierungs- timeout	Kontrollmenü	Zeit	Regler- und Alarmstopp
Capteur hors limites ou en cours de polarisation. I<3,7mA	Fixed / Fixiert			Reglerstopp
Capteur hors limites ou en court circuit. I>22mA	Fixed / Fixiert			Reglerstopp
Capteur absent ou défectueux .	Fixed / Fixiert			Reglerstopp

Technische und preisliche Änderungen sowie Druckfehler vorbehalten DOSAControl DCW 120 MF / Ref. DOS0001 – Rev. 1.1 2013-03-18

8.3 Kontrast-Einstellung

Drücken Sie , um den Kontrast der **PERMANENT**-Anzeige zu verändern.

8.4 EIN- und AUS-schalten des Reglers

9. Kalibrierung

Drücken der Kalibrierungstaste erlaubt dem Anwender zwei Aktionen:

- Kalibrieren: Den Sensor auf den gemessenen Wert kalibrieren (Typ DPD). Gemäß dem in der Kalibrierung eingegeben Wert stellt der Regler automatisch Steilheit oder Offset ein.
- > Reset Kalibrierung: Um den Offset und die Steilheit zurückzusetzen drücken Sie länger als 5 sec.

🞌 Kalibrierung				
Signale	-33,05mV			
Roh-Werte	7,56pH			
Kalibrie 07,1	1 6 pH			
Offset:	-24,20mV			
Steigun	-59,16mVpH			
@ Standard:	100,0 5			

Kalibrierungsmeldung

Meldung	Bedeutung	Aktion
Kalibrierungsfehler über Limit	Der Sensorwert ist außerhalb des erlaubten Be- reichs	Kalibrierung fehlge- schlagen
Kalibrierung fehlge- schlagen, Polarisierung in Arbeit	Während der Polarisierung sind Kalibrierungen verboten	Kalibrierung fehlge- schlagen
Kalibrierung LIMIT Sensor prüfen	Die berechnete Steilheit und/oder Offset sind von den Grenzwerten begrenzt.	Kalibrierung erledigt, und Wartungsanzeiger
Kalibrierung FEHLER	Die berechnete Steilheit und/oder Offset sind oberhalb des Limits	Kalibrierung fehlge- schlagen
Kalibrierung OK	Kalibrierung wurde durchgeführt	Kalibrierung erledigt
Initialisierung mit Werkseinstellungen	Die Steilheit und Offset wurde mit Werkseinstel- lungen zurückgesetzt.	Kalibrierungsreset

10. Einstellungs-Menü

10.1 Regler

Dieses Menü erlaubt Ihnen, die Konfiguration des Gerätes einzustellen.

Berechnungs-Untermenü

Name	Bedeutung	Bereich	Voreingestellt
Sollwert	Regel-Sollwert	Messbereich	20% des Messbereichs
Хр	Reziprok proportionaler Wert	0,5% bis 700% des Mess- bereichs	10% des Messbereichs
Ti	Integrierzeit	0 s bis 9999 s	0 s
Td	Differenzierzeit	0 s bis 2500 s	0 s

Dosier-Untermenü

Name	Bedeutung	Bereich	Voreingestellt
Oxidant / Oxidator	Direkte Aktion des Reglers		TRUE / wahr
Reducer / Reduktor	Umgekehrte Aktion des Reglers		FALSE / falsch
Over dosage/ Überdosierung	Maximale Dauer der konti- nuierlichen Regelung	09999 s	Os

Relais-Untermenü

t Kontrolle
Let Bosierung Relais
Modus: <mark>Zyklus -</mark>
Relais P2 🔻 Typ: 🛛 NO👻
Max Freq .: <u>180</u> ≑ Hübe.
Dauer Zyklus: <mark>20 </mark> 🖨 s
Min Zeit: 3 🖨 s

Name	Bedeutung	Bereich	Voreingestellt
Modus	Relais-Betriebsmodus	PWM ; PFM	PWM
Relais	Von der Dosierung verwen- detes Relais	R1 ; P1 ; P2	P2
Тур	Relaisstatus	NO ; NC (normal offen, normal geschlossen)	NO (normal offen)
Max Freq.	Maximale Frequenz des Re- lais	1bpm 500bpm	180bpm
Weite	PWM-Weite	10s 1800s	20s
Min Zeit	Min. Schaltzeit des Relais	0 5s	3s

10.2 Alarm

Alarm-Parameter verändern und einstellen.

Grenzwert-Untermenü

Name	Bedeutung	Bereich	Voreingestellt
High threshold / Oberer Grenzwert	Wert des oberen Grenzwertes	Messbereich	90% des Messbereiches
Low threshold / Unterer Grenzwert	Wert des unteren Grenzwertes	Messbereich	10% des Messbereiches
Hysteresis / Hysterese	Differenz Wert zu Verriege- lungsalarm	Messbereich	5% des Messbereiches
Delay / Ver- zögerung	Alarmaktivierungsverzögerung	0s240s	2s

Relaisaktivierungs-Untermenü

Dieses Untermenü erlaubt Ihnen auszuwählen, bei welchen Zuständen das Alarm-Relais geschaltet wird.

Relais-Untermenü

Name	Bedeutung	Bereich	Voreingestellt
Relay / Re- lais	Alarmrelais	R1 ; P1 ; P2	P1
Туре / Тур	Zustand des Relais	NO ; NC (normal offen, normal geschlossen)	NO (normal offen)

10.3 Sensor

Dieses Menü erlaubt Ihnen, die Sensoreinstellungen zu verändern.

Name	Bedeutung	Bereich	Voreingestellt
Unit / Einheit	Einheit des angezeigten wertes	Hängt von der Art des Messparameters ab	
Delay / Ver- zögerung	Einschaltverzögerung be- vor der Regler in den Be- triebsmodus übergeht	0 15min	2min

10.4 Analoge Ausgänge

Einstellungen der 0-4/20mA-Ausgänge.

Mess-Untermenü

⊖r <mark>Ausgänge</mark> Messung Dosierung
P. 20mA: 11,00
Bereich: ● 0 - 20mA © 4 - 20mA

Name	Bedeutung	Bereich	Voreingestellt
P. 20mA	Wert korrespondiert mit 20 mA bei lout 1	Messbereich	Maximaler Wert des Bereiches
P.0/4mA	Wert korrespondiert mit 0/4 mA bei lout 1	Messbereich	Minimaler Wert des Bereiches
Range / Be- reich	Betriebsbereich des 0/4-20 mA-Ausganges	0-20 mA / 4-20 mA	4-20 mA

Dosier-Untermenü

	G	Ausgänge [™] Messung Dosierung Bereich: ● 0 - 20mAi Ø 4 - 20mA	
Name	Bedeutung	Bereich	Voreingestellt
Range / Be- reich	Betriebsbereich des 0/4-20 mA-Ausgangs	0-20 mA / 4-20 mA	4-20 mA

Bemerkung: Die höchsten und niedrigsten Werte des 0/4-20mA-Ausgangs korrespondieren mit 0 - 100% des Dosierwertes.

10.5 Durchfluss-Schalter

Einstellen der Durchflussschalter-Funktionen.

Name	Bedeutung	Bereich	Voreingestellt
Funktion Hold	Behalten des Integralteiles der PID währen einer Be- triebspause	ON ; OFF / an, aus	OFF / aus
Delay / Ver- zögerung	Verzögerung der Zustands- änderung des Schalters	0 240s	5s
Туре К1	Zustand von K1	NO ; NC (normal offen, normal geschlossen)	NO (normal offen)

10.6 Information

Hauptinformation des Gerätes

10.7 Kommunikation

Name	Bedeutung	Bereich	Voreingestellt
Mode / Modus	Kommunikationsprotokoll	ModBus RTU ; ModBus ASCII	RTU
Slave ID	Geräte ID	1 247	10
Speed / Ge- schwindigkeit	Geschwindigkeit des RS485 Bus	300 ; 1200 ; 2400 ; 4800 ; 9600 ; 19200 ; 38400 ; 57600 ; 115200	9600baud
Parity / Parität	Fehlerprüfparität	Even ; Odd ; None / gerade, ungeraden. keine	Even / gerade
Technische und preisliche Änderungen sowie Druckfehler vorbehalten			

DOSAControl DCW 120 MF / Ref. DOS0001 - Rev. 1.1 2013-03-18

10.8 Test

Dieses Menü erlaubt Ihnen, die an den DCW 120 angeschlossene Peripherie (Pumpen, Sensoren, Schalter, ...) zu steuern.

Relais-Untermenü

Test Relais	Analog-Aus
R1:	Offen
P1:	Aus
P2:	Offen

Name	Bedeutung	Bereich	Voreingestellt
R1	R1 Relais-Kommando	offen; geschlossen	offen
P1	P1 Relais-Kommando	offen; geschlossen	offen
P2	P2 Relais-Kommando	Pause; Betrieb	Pause

Analog-Ausgangs-Untermenü

E Test	t og-Ausgänge 🗔	E Test	t)g-Ausg	änge ^{– D}
Ausgänge	8<->14	Ausgänge	Ma	inu.
lout1	14,000 🖨 mA	lout1	0,000	ᅌ m.A
lout2	8,000 🖨 mA	lout2	0,000	ᅌ mA

Name	Bedeutung	Bereich	Voreingestellt
Simulation	Typ der Kontrollmethode	Manuell; lout1<->lout2	Manuell
lout1	Strom einstellen	0 20 mA	0mA
lout2	Strom einstellen	0 20 mA	0mA

Eingangs-Untermenü

Test [©] Ausgänge Eingänge			
Vin:	33 , 2mV		
lin	0,00mA		
Pot	-32,81mV		
Kontakt-K1:	Offen		

Name	Bedeutung	Bereich	Voreingestellt
Vin	Spannungseingang	+/-2V	
lin	Stromeingang	0 20 mA	
Pot	Potentiometrischer Span- nungseingang	+/-2V	
K1	K1 Schalter Status	offen; geschlossen	

11. Konfigurationsmenü

Dieses Menü erlaubt Ihnen, den Messparameter-Typ einzustellen.

Sprache:	Deutsch	-
Тур:	pН	-
Sensor	Client	Ŧ
min: +2,0		
max: <mark>+11</mark>	,0 🗢 PH	
Schnittste	lle: Pot	-
Initialisierı	ing: 🕒 RESB	T

Bemerkung: Um in dieses Menü zu gelangen, drücken Sie MENU für länger als 5s.

Name	Bedeutung	Bereich	Voreingestellt
Language / Sprache	Schnittstellensprache	Français; Deutsch; Eng- lish; Español; Nederlands; Italiano	Deutsch
Туре / Тур	Parametertyp	Freies Chlor Aktives Chlor Gesamtchlor Chlorit ClO2 H2O2 BCDMH DBDMH Freies Brom PAA Ozon Gelöster Sauerstoff PHMB Trübung Leitfähigkeit Temperatur Salzgehalt pH Redox Fluorid	Freies Chlor
Sensor	Sensorreferenz	Typabhängig	Kundeneinstellung
min.	Niedriger Wert des Sensor- Messbereiches	1999,920000	0
max.	Hoher Wert des Sensor- Messbereiches	2000,01999,9	10
Einheit	Sensoreinheit	Typabhängig dec ; pH ; ppb ; ppm ; µg/L, mg/L ; g/L ; % ; µS/cm ; mS/cm ; NTU ; FNU ; K ; °C ; °F ; °R ; mA ; mV ; Hz ; bpm ; ms ; s ; min ; h	ppm
Interface / Schnittstelle	Vom Sensor verwendeter Schnittstellentyp	4 20mA ; 0 +2V ; 02V ; Pot	Abhängig vom Sensor
Initializing / Initialisierung	Initialisierung des Gerätes mit Werkseinstellungen		

Bemerkung: Um einen kundenspezifischen Sensor zu definieren, der in der Referenzliste nicht aufgeführt ist, "Client" und einstellen (min., max., Einheit und Schnittstelle) und den neuen Sensor zu definieren.

12. Fehlerbehebung

Fehler	Bemerkungen	Lösung
Die Anzeige bleibt aus, auch nach dem Einschalten	 ✓ Keine Hauptstromversorgung 	 ✓ Prüfen Sie den Anschluss ans Stromnetz ✓ Prüfen Sie den elektrischen Unterbrecher
Nach der Inbetriebnahme bleibt der Messwert für lange Zeit zu niedrig oder der angezeigte Wert ist zusammenhanglos	 ✓ Das Sensorkabel ist nicht an- geschlossen ✓ Sensor kaputt 	 ✓ Prüfen Sie den Sensoran- schluss ✓ Prüfen Sie den BNC-Stecker ✓ Ersetzen Sie den Sensor
Der Messwert bleibt zu hoch	 ✓ Das Sensorkabel ist nicht an- geschlossen ✓ Sensor kaputt 	 ✓ Prüfen Sie den Sensoran- schluss oder ersetzen Sie den Sensor
Anhaltende Instabilität des Messwertes	 ✓ Sensor defekt oder abge- nutzt ✓ Luft im Filterkreislauf ✓ Externe Interferenz 	 ✓ Ersetzen Sie den Sensor ✓ Prüfen Sie die Unversehrtheit des Flüssigkeitskreislaufs
Kalibrierung des Sensors unmög- lich	 ✓ Schwache oder instabile Elektrodenmessung 	 ✓ Prüfen Sie den Kalibrierwert ✓ Tauschen Sie den Sensor
Regelung instabil	✓ Falsche Parameter	 Prüfen Sie die Kontrollpara- meter
Dosiergerät arbeitet nicht	 ✓ Das Gerät hat automatisch gestoppt wegen Überdosie- rung oder Abbruchbedin- gung ✓ Sicherung durchgebrannt 	 ✓ Prüfen Sie die Unterbre- chungs-/Stop-Bedingungen ✓ Prüfen Sie die Alarmgrenz- werte ✓ Prüfen Sie die Relais- Sicherungen

13. Pflege und Wartung

Das Gerät benötigt keine besondere Wartung.

Sein Betrieb hängt vom ordnungsgemäßen Funktionieren aller Komponenten (Sensor, Dosiergerät, ...) ab.

Bitte lesen Sie die Wartungsprozeduren und Wartungsanleitung jedes einzelnen Gerätes, um einen ordnungsgemäßen Betrieb Ihres Prozesses zu ermöglichen.

Reparaturen sollten von qualifizierten Technikern und ausschließlich in unserem Werk ausgeführt werden.

Bei jedwedem Problem an Ihrem Regler oder für Hilfe bei der Bedienung kontaktieren Sie bitte unsere technische Abteilung.

14. Diagramm zur RC-Beschaltung

Technische und preisliche Änderungen sowie Druckfehler vorbehalten DOSAControl DCW 120 MF / Ref. DOS0001 – Rev. 1.1 2013-03-18