

DOSAControl **DCW 220**

Mess- und Regelgerät zur Wasserbehandlung (Teil 1)

Montage- und Inbetriebnahmeanleitung

Bitte lesen Sie die Bedienungsanleitung, bevor Sie das Gerät montieren und in Betrieb nehmen. Dadurch schützen Sie sich und vermeiden Schäden an der Anlage.

Betriebsanleitung für geschultes Fachpersonal

DOSATRONIC GmbH | Zuppingerstraße 8 | 88213 Ravensburg ⁽): +49-(0)7 51 - 2 95 12 -0 | 昌: +49-(0)7 51 - 2 95 12 -190 info@dosatronic.de | www.dosatronic.de

Umfang der Dokumentation

- ► Teil 1: Montage- und Inbetriebnahmeanleitung
 - Teil 2: Programmierungsanleitung
 - Teil 3: Kommunikationsanleitung

Allgemeine Informationen:

Handbuch vom 04/05/2016 Rev. 1 Professionelles Mess- und Regelgerät zur Wasserbehandlung. **DOSA***Control* **DCW 220** Teil 1: Montage- und Inbetriebnahmeanleitung (Ref. DOC0336)

DOSATRONIC GmbH | Zuppingerstraße 8 | 88213 Ravensburg ﷺ: +49-(0)7 51 - 2 95 12 -0 | ≞: +49-(0)7 51 - 2 95 12 -190 info@dosatronic.de | www.dosatronic.de

I.	Allgemeine Hinweise	4
1)	Einsatzbereich	4
2)	FCC-Konformität	5
3)	Verwendung dieses Dokuments	6
4)	Symbole und Zeichen	6
5)	Lagerung und Transport	7
6)	Lieferumfang	7
7)	Garantie	7
II.	Sicherheits- und Umweltschutzhinweise	8
1)	Verwendung des Geräts	8
2)	Pflichten des Betreibers	8
3)	Schutz vor Gefahren	8
4)	Beschriftung und Anbringung des Typenschilds	9
5)	Entsorgung und Konformität	.10
III.	Technische Daten und Funktionen	.11
1)	Technische Daten	.11
2)	Hauptfunktionen	.12
3)	Messungen und Messbereiche	.13
IV.	Montage und elektrische Anschlüsse	.16
1)	Aufstellort	.16
2)	Montage der Wandgeräte	.16
3)	Elektrische Anschlüsse	.16
4)	Hauptstromanschluss (X1)	.18
5)	Anschluss der potentialfreien Leistungsrelaisausgänge (P1, P2)	.19
6)	Anschluss der selbstgespeisten Leistungsrelaisausgänge (P3, P4)	.20
7)	Anschluss der potentialfreien elektronischen Relais (R1, R2, R3, R4)	.21
8)	Anschluss des potentiometrischen Messeingangs (Pot, Ref)	.22
9)	Anschluss des Messeingangs pt100	.23
10)	Anschluss der 0/420mA-Messeingänge (In1, In2, Vref, COM)	.24
11)	Anschluss der Analogausgänge	.28
12)	Anschluss der Digitaleingänge (Kx)	.29
13)	Anschluss an die RS485-Kommunikationsschnittstelle	.31
14)	Anschluss USB-Stick	.33
V.	Erläuterung der Benutzerschnittstelle	.34
1)	Display und Tastatur	.34
2)	Interne Anschlüsse	.35
3)	Klemmenplan	.36
VI.	Inbetriebnahme des Reglers	.37
1)	Einstellen der Sprache	.38
2)	Einstellen von Datum und Uhrzeit	.39
3)	Konfigurieren der Sensoren	.40
4)	Konfigurierung der Messkanäle	.41
5)	Konfigurierung der Dosierpumpenrelais	.42
6)	Konfigurierung der Regelungseinstellungen	.44
7)	Kalibrierung der Messkanäle	.45
8)		
9)	Programmierung der Displayeinstellungen	.46
	Programmierung der Displayeinstellungen Symbole und Betriebsstatus	.46 .48
10)	Programmierung der Displayeinstellungen Symbole und Betriebsstatus Regelung und Dosierung starten	.46 .48 .50
10) VII.	Programmierung der Displayeinstellungen Symbole und Betriebsstatus Regelung und Dosierung starten Ersatzteile und Zubehör	.46 .48 .50 .51

I. Allgemeine Hinweise

1) Einsatzbereich

Das Mess- und Regelgerät der Reihe **DCW 220**, das Sie erworben haben, ist ein elektronisches Gerät zur Regelung der Wasserqualität. Das Gerät wurde mit größter Sorgfalt entwickelt und gefertigt, um einen problemlosen und störungsfreien Betrieb zu ermöglichen.

Dank seiner Fähigkeit zur Anpassung an unterschiedliche Bedingungen und Dimensionen kann es in schwierigsten Umgebungen eingesetzt werden, wo eine intelligente Regelung der Wasserbehandlungsprozesse unverzichtbar ist.

Der Regler **DCW 220** ist auf die Bedürfnisse unserer Kunden abgestimmt und daher mit 4 Analogeingängen und 2 Digitaleingängen für spezielle Wasserbehandlungssensoren ausgestattet. Darüber hinaus verfügt er über Alarmfunktionen und die Möglichkeit, wiederkehrende Befehle zu programmieren. Er kann anhand der eingehenden Informationen 2 Parameter kombinieren und diese Berechnungen als ergänzende Parameter verwenden.

Die Kommunikation mit dem Computer erfolgt über eine RS485-Schnittstelle.

Die einfache Bedienung des **DCW 220**, die benutzerfreundliche Oberfläche sowie die technischen Möglichkeiten der Regelung und ihre vielen Optionen geben Ihnen volle Kontrolle über die Qualität Ihres Schwimmbadwassers.

In der folgenden Anleitung finden Sie alle Informationen, die Sie für die Montage, Bedienung und Wartung Ihrer neuen Anlage benötigen.

- > Montage
- > Technische Daten
- > Inbetriebnahmeanweisungen
- > Sicherheitshinweise

2) <u>FCC-Konformität</u>

Dieses Gerät entspricht Teil 15 der FCC-Vorschriften. Für den Betrieb gelten folgende Bedingungen: (1) Dieses Gerät darf keine schädlichen Störungen verursachen und (2) dieses Gerät muss Störungen tolerieren, einschließlich Störungen, die einen ungewünschten Betrieb verursachen können.

Dieses Gerät wurde geprüft und die Konformität mit den Grenzwerten

bestätigt, die gemäß Teil 15 der FCC-Regeln für ein Digitalgerät der Klasse B gelten. Diese Grenzwerte wurden festgelegt, um in Wohngebäuden einen ausreichenden Schutz vor schädlichen Funkstörungen zu gewährleisten. Das Gerät kann Hochfrequenzenergie erzeugen, nutzen und freisetzen. Ferner kann es, wenn es nicht gemäß den Anweisungen montiert und betrieben wird, Störungen der Funkkommunikation verursachen. Ein vollständiges Ausschließen jeder Störung in allen Fällen ist jedoch nicht möglich.

Wenn dieses Gerät den Radio- oder Fernsehempfang stört, was durch Aus- und Einschalten des Geräts überprüft werden kann, sollten Sie versuchen, die Störung durch eine oder mehrere der folgenden Maßnahmen zu beheben:

- Richten Sie die Empfangsantenne neu aus oder verlegen Sie sie.
- Vergrößern Sie den Abstand zwischen dem Gerät und dem Empfänger.
- Schließen Sie das Gerät an eine Steckdose an, die nicht mit dem Stromkreis verbunden ist, an den der Empfänger angeschlossen ist.
- Wenden Sie sich an den Händler oder einen erfahrenen Radio-/Fernsehtechniker.

Umbauten oder Veränderungen, die nicht ausdrücklich von der für die Einhaltung der Vorschriften verantwortlichen Stelle genehmigt wurden, können dazu führen, dass der Benutzer die Berechtigung zum Betrieb des Geräts verliert.

Anmerkung: Um die Grenzwerte für ein digitales Gerät der Klasse B einzuhalten, verwenden Sie bitte ein abgeschirmtes Kabel, wenn Sie dieses Gerät wie in dieser Anleitung beschrieben anschließen. Bei Verwendung eines ungeeigneten oder nicht geerdeten Kabels erlischt die von der Federal Communications Commission erteilte Berechtigung des Benutzers zum Betrieb dieses Geräts.

3) Verwendung dieses Dokuments

Bitte lesen Sie das gesamte Dokument sorgfältig durch, bevor Sie mit der Montage und Inbetriebnahme des Reglers beginnen, um die Sicherheit von Schwimmern, Benutzern und technischen Geräten zu gewährleisten.

Die in diesem Dokument enthaltenen Informationen müssen unbedingt beachtet werden. Die DOSATRONIC GmbH lehnt jede Verantwortung ab, wenn die Anweisungen in diesen Unterlagen nicht befolgt werden.

Es werden folgende Symbole und Piktogramme verwendet, um das Lesen und Verstehen dieser Anleitung zu erleichtern.

- Information
- Maßnahme erforderlich
- Aufzählungspunkt
 - 4) <u>Symbole und Zeichen</u>
- Kennzeichnung von Gleichspannung oder Gleichstrom

Kennzeichnung von Wechselspannung oder Wechselstrom

Schutzerdung

Erde

Ŧ

Verletzungs- oder Unfallgefahr. Dieses Zeichen warnt vor einer möglichen Gefahr. Der Benutzer muss stets in der Dokumentation nachschlagen, wenn er diesem Symbol begegnet. Werden die Anweisungen nicht beachtet, kann es zu Verletzungen bis hin zum Tod sowie zu Sachschäden kommen.

Gefahr eines elektrischen Schlags. Dieses Warnzeichen weist auf die Gefahr eines tödlichen elektrischen Schlags hin. Werden die Anweisungen nicht genau befolgt, besteht unweigerlich die Gefahr von Verletzungen bis hin zum Tod.

Gefahr von unsachgemäßer Bedienung oder Beschädigung des Geräts.

Anmerkung oder Hinweis

Wiederverwertbares Bauteil

5) Lagerung und Transport

Der Regler **DCW 220** muss unbedingt in seiner Originalverpackung gelagert und transportiert werden, um die Gefahr von Beschädigungen zu minimieren. Außerdem muss die Packung so gelagert werden, dass sie vor Feuchtigkeit und vor der Einwirkung von Chemikalien geschützt ist.

Umgebungsbedingungen für Transport und Lagerung:

Temperatur: - 10 °C ... 70 °C Luftfeuchtigkeit: Maximal 90% ohne Kondensation

6) Lieferumfang

Der Regler wird ohne Stromversorgungskabel geliefert.

Die vorgebohrten Löcher des Gehäuses sind mit elektrischen Verschraubungen gemäß der Schutzart IP65 ausgestattet. Zur Erhaltung der Schutzart müssen die Kabel zu den Verschraubungen passen.

Im Lieferumfang enthalten:

- ✓ Mess- und Regelgerät DCW 220
- ✓ Montage- und Inbetriebnahmeanleitung
- ✓ Programmierungsanleitung
- ✓ Kommunikationsanleitung

7) Garantie

Die Garantie gilt gemäß unseren allgemeinen Verkaufs- und Lieferbedingungen unter folgenden Voraussetzungen:

- > Verwendung des Geräts gemäß den Anweisungen dieser Bedienungsanleitung
- Keine Veränderungen am Gerät, die sein Verhalten verändern könnten, und keine unsachgemäße Bedienung
- > Einhaltung der Bedingungen für die elektrischen Sicherheit

Verbrauchsmaterialien sind nicht mehr von der Garantie abgedeckt, wenn sie in Gebrauch genommen wurden.

II. Sicherheits- und Umweltschutzhinweise

- Bitte lesen Sie dieses Handbuch sorgfältig durch, bevor Sie das Gerät auspacken, montieren oder in Betrieb nehmen.
- Beachten Sie vor jeglicher Benutzung alle Gefahrenhinweise und die empfohlenen Vorsichtsmaßnahmen.

Die Nichtbeachtung dieser Vorschriften kann zu schweren Verletzungen der Benutzer oder zur Beschädigung des Geräts führen.

1) Verwendung des Geräts

Der Regler **DCW 220** wurde für die Messung von Temperatur, pH-Wert, Redoxpotential, Chlor (oder Brom), Ozon, PHMB, Durchfluss, Trübung und Leitfähigkeit durch Sensoren sowie die Regelung dieser Parameter durch geeignete Stellglieder und den Einsatz für die in diesem Handbuch genannten Zwecke konzipiert.

Alle anderen Einsatzzwecke sind nicht bestimmungsgemäß und daher untersagt. Die DOSATRONIC GmbH haftet in keinem Fall für Schäden, die sich aus einer nicht bestimmungsgemäßen Nutzung ergeben.

2) Pflichten des Betreibers

Der Betreiber verpflichtet sich, seine Mitarbeiter nur dann mit dem in diesem Handbuch beschriebenen Regler **DCW 220** arbeiten zu lassen, wenn sie:

- > die grundlegenden Anweisungen zur Arbeitssicherheit und zum Unfallschutz kennen,
- > in der Benutzung des Geräts innerhalb seiner Umgebung geschult sind,
- > diese Anweisungen, Warnhinweise und Bedienvorschriften verstanden haben.

3) <u>Schutz vor Gefahren</u>

Die Montage und der Anschluss des Reglers **DCW 220** dürfen nur von fachkundigem, für diese Aufgabe qualifiziertem Personal durchgeführt werden. Die Montage muss gemäß den geltenden Sicherheitsnormen und -vorschriften erfolgen!

Schalten Sie immer die Hauptstromversorgung ab, bevor Sie das Gerät öffnen oder an den Relaisausgängen arbeiten!

Öffnen Sie niemals das Gehäuse, während das Gerät mit Spannung versorgt wird! Wartungs- und Reparaturarbeiten dürfen nur von geschultem Fachpersonal durchgeführt werden!

Wählen Sie den Einbauort des Reglers mit Bedacht! Montieren Sie den Regler nur in einer sicheren Umgebung und schützen Sie ihn vor Spritzwasser sowie vor Chemikalienspritzern. Montieren Sie ihn an einem trockenen, gut belüfteten und isoliertem Ort.

Vergewissern Sie sich, dass die mit dem Regler verwendeten Sensoren zu den eingesetzten Chemikalien passen. Beachten Sie hierzu die technischen Hinweise jedes einzelnen Sensors. Wasserchemie ist sehr komplex. Bitte fragen Sie im Zweifelsfall umgehend unseren technischen Service oder Ihren autorisierten Monteur/Händler.

Chemische Sensoren sind empfindliche Elemente mit Verschleißteilen. Sie müssen regelmäßig überwacht, gewartet und kalibriert werden, wobei spezielle Kalibriersysteme zu verwenden sind, die nicht mit diesem Gerät geliefert werden. Bei einer Fehlfunktion besteht die Gefahr der Überdosierung von Chemikalien. Schließen Sie im Zweifelsfall einen Servicevertrag bei Ihrem Monteur/Händler oder bei unserem technischen Service ab. Weitere Informationen erhalten Sie bei Ihrem autorisierten Monteur/Händler oder unserem Kundendienst.

4) <u>Beschriftung und Anbringung des Typenschilds</u>

5) Entsorgung und Konformität

Die wiederverwertbare Verpackung des Reglers **DCW 220** muss entsprechend den geltenden Vorschriften entsorgt werden.

Papier, Pappe, Kunststoff sowie andere wiederverwertbare Bestandteile müssen zu einer geeigneten Sortierstelle gebracht werden.

Dieses Symbol bedeutet, dass Elektrogeräte gemäß der europäischen Richtlinie 2002/96/EG ab dem 12. August 2005 nicht mehr zusammen mit Haushalts- oder Industrieabfällen entsorgt werden dürfen. Nach den geltenden Vorschriften sind die Verbraucher innerhalb der Europäischen Union ab diesem Datum verpflichtet, ihre gebrauchten Geräte an den Hersteller zurückzugeben, der sich kostenlos um die Entsorgung kümmert.

Sammlung und Recycling der verbauten Batterien: Dieses Symbol bedeutet, dass gemäß der europäischen Richtlinie 2006/66/EG ab dem 26. September 2006 Altbatterien, Altakkumulatoren und Altmaterialien, die gefährliche Schwermetalle wie Blei (Pb), Cadmium (Cd) oder Quecksilber (Hg) enthalten, vom Hersteller oder einer akkreditierten Stelle getrennt gesammelt werden müssen.

Dieses Symbol bedeutet, dass der Regler **DCW 220** gemäß der europäischen Richtlinie 2002/95/EG in Übereinstimmung mit den Beschränkungen für gefährliche Stoffe konstruiert wurde.

Dieses Symbol bedeutet, dass das Gerät gemäß der Niederspannungsrichtlinie (2006/95/EG) und der Richtlinie über die elektromagnetische Verträglichkeit (2004/108/EG) in Übereinstimmung mit den vorgenannten Richtlinien entwickelt wurde.

Dieses Symbol bedeutet, dass das Gerät gemäß Teil 15 der FCC-Vorschriften (Federal Communications Commission) unter Einhaltung der Grenzwerte und Bedingungen für ein digitales Gerät der Klasse B getestet und zugelassen wurde.

III. Technische Daten und Funktionen

1) <u>Technische Daten</u>

	Allgemeine Spezifikationen	
Тур	Spezifikationen	Markierungen
Verbrauch	2,5A max.	-
Stromversorgung	90V bis 240V +/-10%	-
Überspannungskategorie	Kategorie II	-
Temporäre Überspannung	Akzeptiert temporäre Überspannung aus dem Stromnetz	-
Elektrische	Rückstellende Sicherung	F5
Schutzeinrichtung	Glas 5x20 träge 2A-Sicherung (Relais-Stromleitungen)	F2
Interne Batterie	Ni/MH-Akku 2 V, 15 mA/h	-
Betriebstemperatur (°C)	-5°C bis 45°C	-
Lagertemperatur (°C)	-10°C bis 60°C	-
Luftfeuchtigkeit	Max. 90% nicht kondensierend	-
Gehäusematerial	ABS oder Polycarbonat (UL/CSA-Ausführung)	-
	Breite: 235mm (9,25")	-
Gehäuseabmessungen	Höhe: 185mm (7,28")	
	Tiefe: 119mm (4,67")	
Gewicht	1 kg	-
Schutzart	IP65	-
Display	LCD 128x128 mit blauer Hintergrundbeleuchtung	-
	Eingänge	
	1x potentiometrisch (pH/Redox) +/-2500mV	Pot/Ref
Messeingänge	1x RTD (pt100) -10110°C	Pt100
	2x gespeist analog 420mA (12/24V)	Iin1 und Iin2
Steuerungs- oder	2x programmierbare Impulseingänge "externe Freigabe	K1 und K2
Durchflusseingänge	ein/aus" der "Durchflussmesser"	
	Ausgänge	
	4x elektronisches Relais, potentialfreier Kontakt max. 50mA	R1 bis R4
Relaisausgänge	/ 48VAC	P1 und P2
Reidisdusgunge	2x einpoliger Wechsler, potentialfreier Kontakt 4A / 240VAC	P3 und P4
	2x gespeistes Relais, Netzanschluss 1A / 240VAC	
Analogausgänge	2x Analogausgang 0/420mA max. 500Ω	Iout1 und
, indiogddogdinge		Iout2
Gleichstromausgänge	1x 12/24V Stromversorgung für elektronische Messzellen	Vref – COM
	1x 12VDC Stromversorgungsausgang für max. 0,1A	PWR
	Kommunikationsschnittstellen	
RS485 Bus	1x RS485 Schnittstelle	RS485
USB	1x USB-Buchse für USB-Speichermedium	USB

2) <u>Hauptfunktionen</u>

	Hauptfunktionen	
Funktion	Spezifikationen	Bemerkungen
Regel-/Messkanäle	Durch Sensor(en) ermittelter Parameter-	2 Kanäle
	Messwert	
		Ausgänge für die Behandlung/Dosierung
Regelungsmodus	Hysterese, Grenzwerte, P(I)(D)	in %
		Relaisschaltzeit für Dosierung 240s.
	Selbstgespeiste Relaisausgänge	ON/OFF, PWM, PFM
Stellglieder	Potentialfreie Relaisausgänge	Einstellung auf 0 bis 100% der
	Analogausgänge 0/420mA	programmierten Skala
Richtung	Auf- und Ab-Funktion	
	Oberer und unterer Grenzwert.	Ausgedrückt in Ist-Messwerten
Alarme	Sensorfehler, Dosierzeitüberschreitung	Einhaltung der oberen und unteren
		Grenzwerte
Geschlossener	Externe Freigabe	Geschlossener Regelkreis für Dosierung
Regelkreis	Durchflussregelung	mit Externkontakt (Filtration z.B.) oder
	Niveaumeidung	mit Durchflussregelung.
	Programmierung von	7 verschiedene Zeiten mit wochentlicher
Timer	Aktivitätsintervallen	wiederholung
	Einzeln programmierbare Relaistimer	
Chemische	Chemische Berechnungen anhand	2 Berechnungen
Berechnungen	ausgewählter Parameter	
Wartung	Wartungsunterstützung	Steuerung der Dosierorgane
Aufzeichnung	Datenaufzeichnung	

3) Messungen und Messbereiche

Direkte Messung per Sensor

	0,010,5 mg/l	0,11 mg/l	0,022 mg/l	0,15 mg/l	0,210 mg/l	0,415 mg/l	0,220 mg/l	0,550 mg/l	1100 mg/l	2200 mg/l	202000 mg/l	kundenspezifisch*
Freies Chlor	•		•	•	•	•	•	•	•			•
Aktivchlor			•		•							•
Gesamtchlor	•		•	•	•							•
Chlorit	•		•									•
Chlordioxid	•		•		•							•
Peroxid								•		•	•	•
BCDMH-Brom			•		•	•						•
DBDMH-Brom		•		•	•							•
freies Brom		٠		٠	•							•
Peressigsäure										٠	•	•
Ozon			•									•
Gelöster Sauerstoff					•		•					•
PHMB									•			•

* Kundenspezifische Einstellung der Sensorskala von 0 bis 20.000 (ppb, ppm, µg/l, mg/l, g/l oder %)

Trübung

* Kundenspezifische Einstellung der Sensorskala von 0 bis 20.000 (NTU oder FNU)

	05 mS/cm	010 mS/cm	020 mS/cm	050 mS/cm	0100 mS/cm	0200 mS/cm	kundenspezifisch st
Leitfähigkeit	•	•	٠	٠	•	٠	•

* Kundenspezifische Einstellung der Sensorskala von 0 bis 20.000 (µS/cm, mS/cm)

	-5+45 °C	Konv. PT100	kundenspezifisch*
Temperatur	•	•	•

* Kundenspezifische Einstellung der Sensorskala von -2000 bis 2000 (Kelvin, °C, °F oder °Ra)

	020 l/min	050 l/min	0200 l/min	010 m ³ /h	kundenspezifisch*
Durchfluss (420mA)	•	•	•		•
Durchfluss (Impuls)	•		•	٠	•

* Kundenspezifische Einstellung der Sensorskala von -2000 bis 2000 (I/min, I/h oder m³/h) durch 4...20mA-Eingang oder Impulseingang

* Kundenspezifische Einstellung der Sensorskala von 0 bis 20.000 (I, m³) durch 4...20mA-Eingang

	pH 112	pH 014	Konv. PH_V1	Konv. ISOCAP	Konv. UNISO	kundenspezifisch *
pH-Wert (POT- Eingang)	•	•				•
pH (420mA)			•	٠	•	•

* Kundenspezifische Einstellung der Sensorskala von -1 bis 15 (pH) durch potentiometrischen Eingang oder 4...20mA-Eingang mit Konverter

* Kundenspezifische Einstellung der Sensorskala von -2500 bis 2500mV durch potentiometrischen Eingang oder 4...20mA-Eingang mit Konverter

Aus den Messwerten eines oder mehrerer Sensoren errechnete Daten

Der Regler **DCW 220** kann zwei Parameter zugleich analysieren und regeln.

Diese Parameter ergeben sich aus

- direktem Sensormesswert
- einen Rechenwert aus den Daten mehrerer Sensoreingänge

IV. Montage und elektrische Anschlüsse

1) <u>Aufstellort</u>

Bitte beachten Sie folgende Montageanweisungen, um die Sicherheit des Bedienpersonals und die ordnungsgemäße Funktion des Reglers zu gewährleisten:

- > Montieren Sie den Regler an einem trockenen Ort.
- Schützen Sie den Regler vor Regen, Frost und direkter Sonneneinstrahlung.
- > Der Raum muss eine Temperatur zwischen 0°C und 50°C haben und kondensationsfrei sein.
- > Das Gerät muss vibrationsfrei, auf einer geeigneten Halterung und deformationsfrei montiert werden.

Bei Nichtbeachtung dieser Anweisungen

- > kann es zu Schäden am Regler sowie
- > zur Störung der Messungen kommen;
- > außerdem erlischt die Garantie!

2) Montage der Wandgeräte

Schalten Sie die Stromversorgung aus, bevor Sie das Gerät montieren und elektrisch anschließen!

Die Schutzart IP65 kann nur gewährleistet werden, wenn der Schaltkastendeckel und die Frontabdeckung geschlossen sind und wenn die Kabelverschraubungen zu den Kabeln passen und ordnungsgemäß verschraubt sind.

Bohren Sie drei Löcher mit \emptyset 5 mm anhand des folgenden Bohrbilds.

- ▶ Setzen Sie mit einem Hammer die 5-mm-Dübel ein.
- Setzen Sie zuerst die obere Schraube ein, ohne diese vollständig festzuziehen.
- Setzen Sie die unteren Schrauben ein und ziehen Sie diese fest.
- Ziehen Sie die obere Schraube fest.
- Prüfen Sie die ordnungsgemäße und akkurate Befestigung an der Wand mit einer Wasserwaage.
- 3) Elektrische Anschlüsse

Die Elektromontage muss von einer autorisierten Fachkraft nach den geltenden Vorschriften ausgeführt werden!

Verwenden Sie einen 30-mA-Fehlerstromschutzschalter!

Installieren Sie in der Nähe der Steuerung einen leicht erreichbaren Schutzschalter mit maximal 10 A, damit im Notfall die Hauptstromversorgung unterbrochen werden kann. Kennzeichnen Sie diesen als Schutzschalter für den Regler!

Schalten Sie die Stromversorgung aus, bevor Sie das Gerät anschließen!

Andernfalls verwenden Sie unbedingt eine Aderendhülse, damit die Drähte nicht miteinander in Kontakt kommen!

Schützen Sie die Verdrahtung mit Kabelklemmen.

a) Schutz der Stellglieder

Die über die Relais P3 und P4 angeschlossenen Stellglieder sind durch eine träge Glassicherung 5x20 2A gegen Überstrom geschützt.

Artikelnummer	Bezeichnung
FUS5X20T2A	5x20 2A Glassicherung, träge

Wenn die Sicherung durchgebrannt ist, überprüfen Sie, ob die Karte ebenfalls durchgebrannt ist. In diesem Fall muss die gesamte Karte ausgetauscht werden! Bei Zerstörung des Varistors senden Sie den Regler bitte zur Begutachtung an unsere technische Abteilung!

b) Interner Schutz

Der Regler **DCW 220** ist intern durch eine rückstellbare Sicherung und einen Varistor gegen Überspannung und Stromstöße geschützt.

Bei Zerstörung des Varistors und/oder der Sicherung senden Sie den Regler bitte zur Begutachtung an unsere technische Abteilung!

4) <u>Hauptstromanschluss (X1)</u>

Der Regler **DCW 220** verwendet ein internes Schaltnetzteil. Deshalb kann er problemlos mit Wechselstrom von 90 bis 250V 5/60Hz versorgt werden.

- Verwenden Sie f
 ür die Stromversorgung ein 3-adriges Kabel mit 1,5 mm². Schließen Sie zuerst das Erdungskabel an.
- Entfernen Sie 7 mm der Isolierung an den 3 Adern.
- Schieben Sie das dreiadrige Kabel in eine Kabeldurchführung.
- ▶ Verdrahten Sie die Erdung mit einer M4-Ösenklemme mit dem Schraubkontakt.
- Verdrahten Sie die Leitung mit L1 und den Nullleiter mit N am Klemmenbrettabschnitt X1.
- > Ziehen Sie die Kabeldurchführung fest, um die Dichtigkeit zu gewährleisten.

Der Regler hat keinen eigenen Netzschalter. Er ist eingeschaltet, sobald er ans Stromnetz angeschlossen ist.

5) Anschluss der potentialfreien Leistungsrelaisausgänge (P1, P2)

Die potentialfreien Leistungsrelaisausgänge dienen zur Regelung der gemessenen oder berechneten Parameter. Diese Relais sind vollständig programmierbar (Ein/Aus, Pulsweitenmodulation, Impulsmodulation oder Zeitfenster) für alle vom Regler verarbeiteten Parameter.

- ► Verwenden Sie ein zweiadriges Kabel.
- Entfernen Sie 7 mm der Isolierung.
- Schieben Sie das Kabel in eine Kabeldurchführung.
- Schließen Sie eine Ader an die **GEMEINSAME LEITUNG** der Klemmenleiste an.
- Schließen Sie die andere je nach Art Ihrer Anwendung an die Klemmen **NO** oder **NC** an.
- > Ziehen Sie die Kabeldurchführung fest, um die Dichtigkeit zu gewährleisten.

T.T. T TT. ទ្វី ខ្លែរ វ័រ ្ 00000000000 000 0 'n Warnanzeige Externe Versorgung

6) Anschluss der selbstgespeisten Leistungsrelaisausgänge (P3, P4)

Die selbstgespeisten Leistungsrelaisausgänge dienen zur Regelung der gemessenen oder berechneten Parameter. Diese Relais sind vollständig programmierbar (Ein/Aus, Pulsweitenmodulation oder Zeitfenster) für alle vom Regler verarbeiteten Parameter.

- ▶ Verwenden Sie für den Anschluss der Pumpe ein 3-adriges Kabel mit 1,5 mm².
- Entfernen Sie 7 mm der Isolierung an den 3 Adern.
- Schieben Sie das dreiadrige Kabel in eine Kabeldurchführung.
- ► Verdrahten Sie die Erde mit PE.
- ► Verdrahten Sie die Leitung mit **L1**.
- ► Verdrahten Sie den Nullleiter mit **N**.
- > Ziehen Sie die Kabeldurchführung fest, um die Dichtigkeit zu gewährleisten.

000 Dosierpumpe PE

Diese Relais sind permanent mit dem Nullleiter verbunden und schalten die Hauptstromleitung L1, wobei Sie darauf achten müssen, die Leitungs- und Nullleiter nicht zu vertauschen. Um Stromschläge zu vermeiden, müssen alle Anschlüsse bei ausgeschaltetem Gerät vorgenommen werden.

7) Anschluss der potentialfreien elektronischen Relais (R1, R2, R3, R4)

Die elektronischen Relaisausgänge (selbstgespeist) dienen zur Regelung verschiedener gemessener oder berechneter Parameter. Diese Relais sind vollständig programmierbar (Ein/Aus, Pulsweitenmodulation, Impulsmodulation oder Zeitfenster) für alle vom Regler verarbeiteten Parameter.

- ► Verwenden Sie ein zweiadriges Kabel.
- Entfernen Sie 7 mm der Isolierung.
- Schieben Sie das Kabel in eine Kabeldurchführung.
- ▶ Verdrahten Sie beide Adern mit dem Klemmenblock.
- > Ziehen Sie die Kabeldurchführung fest, um die Dichtigkeit zu gewährleisten.

Diese Relais verwenden elektronische Komponenten für Schaltvorgänge und dienen auch zur Ansteuerung von Pumpen oder externen Relais mit Impulsfrequenzsignalen. Die Relais können **maximal 48 VAC** Spannung und **50 mA** Strom schalten. 8) Anschluss des potentiometrischen Messeingangs (Pot, Ref)

Der Analogeingang wird zum Anschluss von pH- oder Redox-Messsensoren verwendet.

- ▶ Verwenden Sie das mit Ihrem Sensor gelieferte geschirmte Kabel.
- Entfernen Sie 7 mm der Isolierung.
- Schieben Sie das Kabel in eine Kabeldurchführung.
- ▶ Verdrahten Sie die mittlere Ader mit dem Anschluss **Pot**.
- ► Verbinden Sie das Schirmgeflecht mit **Ref**.
- > Ziehen Sie die Kabeldurchführung fest, um die Dichtigkeit zu gewährleisten.

Achten Sie beim Anschließen aller Adern auf die Polarität.

9) Anschluss des Messeingangs pt100

Der Analogeingang wird für den Anschluss von Platin-Temperaturmessfühlern verwendet. Es ist eine pt100-Messzelle erforderlich.

- ► Verwenden Sie ein zweiadriges Kabel.
- Entfernen Sie 7 mm der Isolierung.
- Schieben Sie das Kabel in eine Kabeldurchführung.
- ▶ Verdrahten Sie beide Adern mit dem Klemmenblock.
- > Ziehen Sie die Kabeldurchführung fest, um die Dichtigkeit zu gewährleisten.

10) Anschluss der 0/4...20mA-Messeingänge (In1, In2, Vref, COM)

Die Analogeingänge werden für die Bereitstellung mehrerer Messignale durch Sensoren oder spezielle Messzellen mit 4...20-mA-Stromsignalen verwendet.

Die Messeingänge des Reglers sind selbstgespeist (12 oder 24 VDC). Diese Spannung kann auf die Versorgung eines passiven Sensors oder Messumformers eingestellt werden

Bitte achten Sie beim Anschluss der Adern der externen Messzellen oder der Umformer an die Reglereingänge auf die Polarität.

Der Spannungsausgang **Vref COM** (12 oder 24 VDC) kann für die Versorgung von 4-adrigen Sensoren mit Stromsignalen verwendet werden.

- a) Anschluss eines passiven 2-Draht-Sensors
 - ► Verwenden Sie ein zweiadriges Kabel.
 - Entfernen Sie 7 mm der Isolierung.
 - Schieben Sie das Kabel in eine Kabeldurchführung.
 - ▶ Verdrahten Sie beide Adern mit dem Klemmenblock und achten Sie auf die Polarität.
 - > Ziehen Sie die Kabeldurchführung fest, um die Dichtigkeit zu gewährleisten.

- b) Anschluss eines passiven 4-adrigen Sensors
 - Entfernen Sie 7 mm der Isolierung.
 - Schieben Sie das Kabel in eine Kabeldurchführung.
 - ▶ Verdrahten Sie die beiden Versorgungsadern mit Vref (+) und COM (-).
 - ▶ Verdrahten Sie die beiden Stromschleifenadern mit **In1** (+) und (-).
 - > Ziehen Sie die Kabeldurchführung fest, um die Dichtigkeit zu gewährleisten.

0	

- c) Anschluss aktiver Sensoren
 - Entfernen Sie 7 mm der Isolierung.
 - Schieben Sie das Kabel in eine Kabeldurchführung.
 - ► Verdrahten Sie die Referenz mit **COM** (-).
 - ► Verdrahten Sie die Stromversorgung mit **In2** (-).
 - > Ziehen Sie die Kabeldurchführung fest, um die Dichtigkeit zu gewährleisten.

0	

- d) Schaltverbindung Stromschleife
 - Entfernen Sie 7 mm der Isolierung.
 - Schieben Sie das Kabel in eine Kabeldurchführung.
 - Verdrahten Sie die beiden Adern des Schalters mit In1 (+) und (-).
 - > Ziehen Sie die Kabeldurchführung fest, um die Dichtigkeit zu gewährleisten.

11) Anschluss der Analogausgänge

Die Analogausgänge des Reglers dienen zur Weiterleitung von Informationen an eine ZLT oder zur Steuerung einer Dosiereinheit mittels 0/4...20-mA- oder 20...0/4-mA-Signal.

Die Analogausgänge des Reglers sind vollständig konfigurierbar. Sie können also jedem gemessenen oder berechneten Parameter einen Ausgang zuweisen und ihn zur Regelung oder Datenübertragung nutzen.

- ► Verwenden Sie ein zweiadriges Kabel.
- Entfernen Sie 7 mm der Isolierung.
- Schieben Sie das Kabel in eine Kabeldurchführung.
- Verdrahten Sie die beiden Stromschleifenadern mit Out1 oder Out2 (+) und (-).
- > Ziehen Sie die Kabeldurchführung fest, um die Dichtigkeit zu gewährleisten.

0

12) Anschluss der Digitaleingänge (Kx)

Der Regler **DCW 220** verfügt über zwei Digitaleingänge (K1 und K2), die zur externen Freigabe oder zum Anschluss von Sensoren wie einem Impulsdurchflussmesser verwendet werden können. Diese Eingänge sind entweder als Öffner/Schließer oder als Impulseingang ausgeführt, die der Hauptumwälzpumpe oder dem Filtersystem untergeordnet sind.

Der Regler muss unbedingt dem Schalter des Filtersystemmotors untergeordnet werden, um Schäden durch Chemikalienüberdosierung zu vermeiden!

Die Eingänge K1 und K2 können als Schließer (NO-Kontakt) oder Öffner (NC-Kontakt) ausgeführt sein. Der Schalter kann potenzialfrei, NPN oder PNP sein.

- a) Potentialfreie Schaltverbindung (Durchflusswächter/-zähler, Leermeldung, Fernschalter)
 - ► Verwenden Sie ein zweiadriges Kabel.
 - Entfernen Sie 7 mm der Isolierung.
 - Schieben Sie das Kabel in eine Kabeldurchführung.
 - ▶ Verdrahten Sie die beiden Adern des Schalters mit (SW) und (+).
 - > Ziehen Sie die Kabeldurchführung fest, um die Dichtigkeit zu gewährleisten.

Wenn Sie das Funktionieren eines Filtermotors überwachen möchten, müssen Sie ein externes Relais zum Anschluss eines potentialfreien Schalters verwenden.

- b) Anschluss bipolarer Schalter (NPN, PNP)
 - Entfernen Sie 7 mm der Isolierung.
 - Schieben Sie das Kabel in eine Kabeldurchführung.
 - ▶ Verdrahten Sie die beiden Versorgungsadern, braun an (+) und blau an (-).
 - Verdrahten Sie die schwarze Ader an (SW)
 - > Ziehen Sie die Kabeldurchführung fest, um die Dichtigkeit zu gewährleisten.

13) Anschluss an die RS485-Kommunikationsschnittstelle

Der Regler **DCW 220** verfügt über eine RS485-Kommunikationsschnittstelle zum Anschluss eines Computers mit der Datenverarbeitungssoftware **SYSCOM**[®], die zur Aufzeichnung von Messungen, Alarmmeldungen und Anweisungen dient und Grafiken darstellen kann.

- a) Anschluss an den USB-Port des Computers
- ► Verwenden Sie ein dreiadriges Kabel.
- Entfernen Sie 7 mm der Isolierung.
- Schieben Sie das Kabel in eine Kabeldurchführung.
- ► Verdrahten Sie AA' (Nr. 3) des Konverters mit der Klemme **RS485** (A).
- ► Verdrahten Sie BB' (Nr. 4) des Konverters mit der Klemme **RS485** (B).
- ► Verdrahten Sie C (Nr. 5) des Konverters mit der Klemme **PWR** (C).
- ► Ziehen Sie die Kabeldurchführung fest, um die Dichtigkeit zu gewährleisten.

Bitte wenden Sie sich an uns, wenn Sie Fragen zu diesen Produkten haben.

Beachten Sie die Anschlusspolaritäten des Busses.

Wir empfehlen ein USB/RS485-Schnittstellenmodul zum Anschluss des Reglers **DCW 220** an Ihren Computer. Bitte beachten Sie beim Anschließen die Anweisungen für diesen Konverter.

Artil	kelnummer	Bezeic	hnung								
]	INF1021	USB =>	485-Kor	nverter							
i	Die Steue (Parallelso	erungen chaltung)	können	unter	Beachtung	der	Reihenfolge	der	Kabel	verkettet	werden

b) Gesamte Verbindung mit PLC und RS485-Port

14) Anschluss USB-Stick

Der Regler **DCW 220** verfügt über eine USB-Buchse zum Anschluss eines Speichersticks, die Sie zum Speichern von Messdaten und für Firmware-Updates nutzen können.

V. Erläuterung der Benutzerschnittstelle

1) Display und Tastatur

	\frown					
	Esc Calibration Start/Stop					
DOSAControl DCW 220						

Taste **Menu**:

Aufrufen des Benutzermenüs

Taste Kalibrierung:

Aufrufen des Bildschirms für die Parameterkalibrierung

Taste **START/STOP**:

- Starten oder Stoppen des Dosiervorgangs
- Quittieren anstehender Alarme.

OK

Taste **Esc**:

- Langes Drücken auf den Hauptbildschirm verkürzt die Polarisationsverzögerung aller Sensoren
- Verlassen des Menüs während der Navigation.

Taste OK:

- Reihenfolge der Parameter auf dem Hauptbildschirm umkehren
- Werte und Einstellungen prüfen
- Beim Navigieren Menü öffnen

Taste +:

- Wert erhöhen oder obere Option wählen
- Aufwärts oder zurück zum vorherigen Menü navigieren
- Bildschirmkontrast auf dem Hauptbildschirm erhöhen

Taste -:

- Wert verringern oder untere Option wählen
- Abwärts oder weiter zum nächsten Menü navigieren
- Bildschirmkontrast auf dem Hauptbildschirm verringern

2) Interne Anschlüsse

3) Klemmenplan
VI. Inbetriebnahme des Reglers

Wenn Sie die elektrischen Anschlüsse der verschiedenen Sensoren und Stellglieder hergestellt haben, kann der Regler gestartet werden.

- Schließen Sie den Regler an die Energieversorgung an.
- Vergewissern Sie sich, dass alle Systeme korrekt funktionieren, dass Ihr Regler an ist und dass die übrigen Elemente Ihrer Anlage störungsfrei arbeiten.

Nach dem Starten beginnt der Regler nicht automatisch mit der Überwachung der Chemikalienkonzentration. Sie selbst entscheiden, wann die Behandlung beginnt, nachdem Sie sich vergewissert haben, dass der Regler korrekt und entsprechend den Anforderungen programmiert wurde.

Nach dem ersten Starten werden die in der Basiskonfiguration festgelegten Parameter angezeigt und alle Prozesse sind inaktiv.

- Messung: freies Chlor
- Skala: 0-10ppm
- Vref und 4...20mA-Sensorversorgung: 12V

Wenn Sie den Regler starten, erscheint zunächst ein Bildschirm mit dem **LOGO** und danach der Hauptbildschirm mit den gemessenen Parametern.

- 1) Einstellen der Sprache
- ► Gehen Sie zum Bildschirm "**Sprache**".

► Wählen Sie Ihre Sprache.

- 2) Einstellen von Datum und Uhrzeit
- ► Gehen Sie zum Bildschirm "Datum&Uhrzeit".

► Geben Sie das aktuelle Datum und die Uhrzeit ein.

3) Konfigurieren der Sensoren

Ein Sensor ist ein physisches Instrument, das an Ihr Gerät angeschlossen ist.

► Gehen Sie zum Bildschirm "Eingänge".

- ► Geben Sie alle Sensorspezifikationen gemäß Sensorhandbuch ein.
- Gehen Sie analog bei allen Sensoren und F
 ühlern vor.

4) Konfigurierung der Messkanäle

Ein Messkanal ist einem Messwert zugeordnet, der entweder direkt von einem Sensor übermittelt oder aus den Werten mehrerer Sensoren errechnet wird. Dieser Kanal kann eingestellt werden und für ihn können Alarm- und Grenzwerte festgelegt werden.

Beispiel: Sie ordnen den POT-Eingang einem pH-Sensor und den IN1-Eingang freiem Chlor zu. Nun können Sie den Messkanal entweder auf den pH-Wert oder auf freies Chlor einstellen oder

auf Chlor aus der Berechnung der Werte Ihres pH-Sensors und des freien Chlors.

► Gehen Sie zum Bildschirm "**Messung**".

► Stellen Sie die Art der Messung ein (entsprechend der vorher konfigurierten Sensoren).

- Wählen Sie die Sensoreingänge aus, die Sie f
 ür die Berechnung des Messwerts nutzen m
 öchten.
- ► Gehen Sie analog bei allen Messkanälen vor.

5) Konfigurierung der Dosierpumpenrelais

Gehen Sie zum Bildschirm "Relais".

▶ Wählen Sie das Relais, das Ihre Pumpe steuert.

- ► Stellen Sie den Modus auf "Regeln" ein.
- ▶ Weisen Sie das Relais einem Messkanal zu **E(x)**.
- ▶ Wählen Sie die Dosierrichtung (z.B. Ab zum Senken des pH-Werts oder Auf zum Erhöhen des pH-Werts).

E1

- ► Konfigurieren Sie die Ansteuerungsspezifikationen Ihrer Pumpe.
- ► Stellen Sie den Regelbereich ein.

	P2	Ansteueru	
+	Funktion Ansteueru Regelberei	NO ▼ PWM▼ ch	C
Β	Min 0 Dauer Tmin	 Max 0 10	

P2 Edge Zuwe	eis Ansteueru			
Funktion	NO 🔻			
Ansteueru	J PWM			
Regelbereich				
Min 0	♦ Max <u>1</u> 00 ♦			
Dauer	10 🜩 s			
Tmin	0 💠 s			

6) Konfigurierung der Regelungseinstellungen

► Gehen Sie zum Bildschirm "**Regelung**".

► Wählen Sie den zu regelnden Messkanal.

	ÎΣ Regeln			E1 Fr. Chlor Einstellu Dosierung	
	E1 Freies Chlor	>		Modus Inaktiv 🔻	
+	E2 pH	>	ОК		ок

- ► Wählen Sie die Regelungsmethode.
- ► Wählen Sie die Regelungsrichtung.
- ► Führen Sie die Feinanpassung des Reglers an Ihren Prozess durch.

► Gehen Sie analog bei allen Messkanälen vor.

7) Kalibrierung der Messkanäle

Kalibrierung ist wichtig für einen reibungslosen Prozess. Falsche Kalibrierung kann zu Gesundheitsschäden führen sowie die Anlagensicherheit beeinträchtigen. Wenn Sie bei den durchzuführenden Aufgaben unsicher sind, wenden Sie sich vor der Kalibrierung bitte an unseren technischen Dienst.

Falsche Kalibrierung kann zu einer Überdosierung von Chemikalien führen und die Umwelt schädigen.

Der Regler hat auf der Frontplatte eine eigene Taste für die Schnellkalibrierung.

- ► Drücken Sie die Taste **KALIBRIERUNG**.
- ▶ Wählen Sie den Messkanal, den Sie kalibrieren möchten.
- ► Stellen Sie den Wert ein.

Nach der Kalibrierung werden die Ergebnisse angezeigt.

◊• ◊ E1 Fr.	Chlor
 Ergebnis – Nennstlht Offset Isopunkt Drift 	1.192 mg/l/mA 4.000mA 0.000mg/l -0.72%

► Gehen Sie analog bei allen verwendeten Parametern vor.

8) Programmierung der Displayeinstellungen

► Gehen Sie zum Bildschirm "**Display**".

► Wählen Sie die Statusleisteninformation.

► Wählen Sie den Anzeigemodus des Hauptbildschirms.

Vertikalansicht 2V

Horizontalansicht 2H

9) Symbole und Betriebsstatus

Symbole in der Statusleiste

RS485-Kommunikation aktiv.

© 🔺 Ein Timer ist aktiviert. Parameter mit Timern können Regelungen und Alarme auslösen.

> In der Mitte des Symbols wird die Anzahl der aktiven Timer als blinkende Ziffer dargestellt.

AU

EIN → Das Gerät ist EINgeschaltet; Regelungen und Alarme sind möglich.

Das Gerät ist AUSgeschaltet; Regelungen, Alarme, Relais und Analogausgänge sind deaktiviert.

Status des Parameterkanals ≻

Status des Messkanals

Oberer Grenzwert überschritten Unterer Grenzwert unterschritten Sensor fehlerhaft, außerhalb des Messbereichs oder nicht angeschlossen Dosierzeit überschritten oder Tankleermeldung Regelung durch einen Timer unterbrochen Externe Freigabe aktiv Wasserdurchfluss unterbrochen

ž

الآرم

Sensor läuft an Sensorkalibrierung erforderlich Messwert instabil

<u>Kontrollbalken</u>

- ➔ Regelung gestoppt
- ➔ Kein Sollwert programmiert
- ➔ Regelung des Parameters pausiert
- ➔ Keine Behandlung erforderlich
- ➔ Behandlung läuft mit 42,8% Dosierkapazität
- → Keine Regelung. Parameter im Alarmmodus!

10) Regelung und Dosierung starten

Wenn Sie alle oben beschriebenen Einstellungen vorgenommen haben, kann der Regler **DCW 220** mit der Berechnung der Regelung und der Dosierung beginnen.

Vergewissern Sie sich vor dem Start, dass alle Parameter sowie die verschiedenen, in dieser Dokumentation genannten Sicherheitsfunktionen beachtet wurden.

Wenn Sie ein Menü durch Drücken der Taste **und** aufrufen, um die Programmierung zu verändern, stoppt der Regler automatisch. Dies ist eine Sicherheitsfunktion.

Das Symbol AUS in der Statusleiste zeigt an, dass der Regler deaktiviert und alle Stellglieder gestoppt sind.

Das Symbol EIN in der Statusleiste zeigt an, dass der Regler mit allen Kanälen und Alarmen aktiv ist.

► Starten Sie den Regler mit der Taste

► Vergewissern Sie sich, dass alles ordnungsgemäß funktioniert und dass das Gerät mit den Reglungsprozessen beginnt.

VII. Ersatzteile und Zubehör

Artikelnummer	Bezeichnung	
	Träge Sicherung 2A 5x20	
	USB-Stick 4GB	
	Adapter USB->RS485	
	Relais 12V 5A 2RT	
Andere Artikelnummern bitte anfragen.		

VIII. Wartung

Der Regler ist weitgehend wartungsfrei.

Reparaturen dürfen nur von technischem Fachpersonal und nur in unserem Werk durchgeführt werden.

Wenn Sie Probleme mit dem Regler und/oder den Sensoren haben oder wenn Sie Tipps für die Behandlung Ihres Wassers benötigen, wenden Sie sich gerne an unsere Kundendienstabteilung.

E-Mail: info@dosatronic.de

NOTIZEN

Notizen	Seite 55/56

Montage- und Inbetriebnahmeanleitung für DCW 220

DOSA Control **DCW 220**

Mess- und Regelgerät zur Wasserbehandlung (Teil 2)

Programmierungsanleitung

Bitte lesen Sie die Bedienungsanleitung, bevor Sie das Gerät montieren und in Betrieb nehmen. Dadurch schützen Sie sich und vermeiden Schäden an der Anlage.

Betriebsanleitung für geschultes Fachpersonal

Umfang der Dokumentation

- Teil 1: Montage- und Inbetriebnahmeanleitung
- ► Teil 2: Programmierungsanleitung
 - Teil 3: Kommunikationsanleitung

Allgemeine Informationen:

Handbuch vom 04/05/2016 Rev. 1

Professionelles Mess- und Regelgerät zur Wasserbehandlung. **DOSA***Control* **DCW 220**

Teil 2: Programmierungsanleitung (DOC0336)

DOSATRONIC GmbH | Zuppingerstraße 8 | 88213 Ravensburg ﷺ: +49-(0)7 51 - 2 95 12 -0 | ≞: +49-(0)7 51 - 2 95 12 -190 info@dosatronic.de | www.dosatronic.de

INHALT

I.	Verwendung dieses Dokuments	. 5
1)	Symbole und Zeichen	. 5
2)	FCC-Konformität	. 6
II.	Sicherheits- und Umweltschutzhinweise	. 7
1)	Verwendung des Geräts	. 7
2)	Pflichten des Betreibers	. 7
3)	Schutz vor Gefahren	. 7
4)	Beschriftung und Anbringung des Typenschilds	. 8
5)	Entsorgung und Konformität	. 9
III.	Erläuterung der Benutzerschnittstelle des Reglers DCW 220	10
1)	Display und Tastatur	10
2)	Interne Anschlüsse	11
3)	Klemmenplan	12
IV.	Aufbau und Verzeichnis der Menüs	13
1)	Aufbau der Menüs	13
2)́	Baumstruktur und Verzeichnis der Menüs	13
V. ĺ	Anzeigemodi	14
1)	Symbole und Betriebsstatus	15
VI. Ó	Benutzermenü	17
1)	Zugriff auf das Technikermenü	17
2)	Einstellen der Sprache	18
3)	Finstellen von Datum und Uhrzeit	19
4)	Schnittstellenverwaltung	20
6)	Info	23
7)	Funktionstest	24
VII	Technikermenii	28
1)	Zugriff auf das Expertenmenü	28
2)	Technikercode	29
2) 3)	Aktive Timer	30
4)	Kalibrierung der Sensoren	33
5)	Regelungseinstellungen	30
5) 6)	Durchflusseinstellungen	45
7)	Tank-Finstellungen	46
2) 2)	Alarmo	/7
0)	Aldinic	77 70
9) 10		49 E0
	j Dateilaulzeitillilling	50
1)	Expertenmenu	51
1) 2)	Zugangesede ändern	
a) 2)		21
2)	Elliydiye	52
a)	POI-Eingang konfigurieren	53
D)	RID-Eingang konfigurieren	54
C)	INI- und INZ-Eingang konfigurieren	55
a)	K1- und K2-Eingang konfigurieren	5/
e)	Sensorverzogerung einstellen	59
T)	vrer-versorgungsspannung konfigurieren	59
3)	Messung	60
4)	Konfiguration des Durchflusses	62
5)	Konfiguration des Tanks	64
6)	Externe Freigabe	65
7)	Kelais	70
8)	Analogausgange	/9

9)	Display	81
10) Kommunikation	84
11	,) Einstellungen	85
IX.	USB	86
1)	Datenaufzeichnung	86
2)	Speichern und Laden einer Konfigurationsdatei	87
3)	Firmware-Update	87

I. Verwendung dieses Dokuments

Bitte lesen Sie diese gesamte Anleitung durch, bevor Sie mit der Montage, der Einstellung oder der Inbetriebnahme Ihres Reglers beginnen, um die Sicherheit von Schwimmern, Benutzern und technischen Geräten zu gewährleisten.

Die in diesem Dokument enthaltenen Informationen müssen unbedingt beachtet werden. Die DOSATRONIC GmbH lehnt jede Verantwortung ab, wenn die Anweisungen in diesen Unterlagen nicht befolgt werden.

Es werden folgende Symbole und Piktogramme verwendet, um das Lesen und Verstehen dieser Anleitung zu erleichtern.

- Information
- Maßnahme erforderlich
- Aufzählungspunkt
 - 1) Symbole und Zeichen
- Kennzeichnung von Gleichspannung oder Gleichstrom
- Kennzeichnung von Wechselspannung oder Wechselstrom

Schutzerdung

Erde

Verletzungs- oder Unfallgefahr. Dieses Zeichen warnt vor einer möglichen Gefahr. Der Benutzer muss stets in der Dokumentation nachschlagen, wenn er diesem Symbol begegnet. Werden die Anweisungen nicht beachtet, kann es zu Verletzungen bis hin zum Tod sowie zu Sachschäden kommen.

Gefahr eines elektrischen Schlags. Dieses Warnzeichen weist auf die Gefahr eines tödlichen elektrischen Schlags hin. Werden die Anweisungen nicht genau befolgt, besteht unweigerlich die Gefahr von Verletzungen bis hin zum Tod.

Gefahr von unsachgemäßer Bedienung oder Beschädigung des Geräts.

Anmerkung oder Hinweis

Wiederverwertbares Bauteil

2) <u>FCC-Konformität</u>

Dieses Gerät entspricht Teil 15 der FCC-Vorschriften. Für den Betrieb gelten folgende Bedingungen: (1) Dieses Gerät darf keine schädlichen Störungen verursachen und (2) dieses Gerät muss Störungen tolerieren, einschließlich Störungen, die einen ungewünschten Betrieb verursachen können.

Dieses Gerät wurde geprüft und die Konformität mit den Grenzwerten bestätigt, die gemäß Teil 15 der FCC-Regeln für ein Digitalgerät der Klasse B gelten. Diese Grenzwerte wurden festgelegt, um in Wohngebäuden einen ausreichenden Schutz vor schädlichen Funkstörungen zu gewährleisten. Das Gerät kann Hochfrequenzenergie erzeugen, nutzen und freisetzen. Ferner kann es, wenn es nicht gemäß den Anweisungen montiert und betrieben wird, Störungen der Funkkommunikation verursachen. Ein vollständiges Ausschließen jeder Störung in allen Fällen ist jedoch nicht möglich.

Wenn dieses Gerät den Radio- oder Fernsehempfang stört, was durch Aus- und Einschalten des Geräts überprüft werden kann, sollten Sie versuchen, die Störung durch eine oder mehrere der folgenden Maßnahmen zu beheben:

- Richten Sie die Empfangsantenne neu aus oder verlegen Sie sie.
- Vergrößern Sie den Abstand zwischen dem Gerät und dem Empfänger.
- Schließen Sie das Gerät an eine Steckdose an, die nicht mit dem Stromkreis verbunden ist, an den der Empfänger angeschlossen ist.
- Wenden Sie sich an den Händler oder einen erfahrenen Radio-/Fernsehtechniker.

Umbauten oder Veränderungen, die nicht ausdrücklich von der für die Einhaltung der Vorschriften verantwortlichen Stelle genehmigt wurden, können dazu führen, dass der Benutzer die Berechtigung zum Betrieb des Geräts verliert.

Anmerkung: Um die Grenzwerte für ein digitales Gerät der Klasse B einzuhalten, verwenden Sie bitte ein abgeschirmtes Kabel, wenn Sie dieses Gerät wie in dieser Anleitung beschrieben anschließen. Bei Verwendung eines ungeeigneten oder nicht geerdeten Kabels erlischt die von der Federal Communications Commission erteilte Berechtigung des Benutzers zum Betrieb dieses Geräts.

II. Sicherheits- und Umweltschutzhinweise

- > Bitte lesen Sie dieses Handbuch sorgfältig durch, bevor Sie das Gerät auspacken, montieren oder in Betrieb nehmen.
- Beachten Sie vor jeglicher Benutzung alle Gefahrenhinweise und die empfohlenen Vorsichtsmaßnahmen.

Die Nichtbeachtung dieser Vorschriften kann zu schweren Verletzungen der Benutzer oder zur Beschädigung des Geräts führen.

1) Verwendung des Geräts

Der Regler **DCW 220** wurde für die Messung von Temperatur, pH-Wert, Redoxpotential, Chlor (oder Brom), Ozon, PHMB, Durchfluss, Trübung und Leitfähigkeit durch Sensoren sowie die Regelung dieser Parameter durch geeignete Stellglieder und den Einsatz für die in diesem Handbuch genannten Zwecke konzipiert.

Alle anderen Einsatzzwecke sind nicht bestimmungsgemäß und daher untersagt. Die DOSATRONIC GmbH haftet in keinem Fall für Schäden, die sich aus einer nicht bestimmungsgemäßen Nutzung ergeben.

Der Einsatz von Sensoren oder Schnittstellen, die nicht die in diesem Handbuch beschriebenen Spezifikationen erfüllen, ist ebenfalls untersagt.

2) Pflichten des Betreibers

Der Betreiber verpflichtet sich, seine Mitarbeiter nur dann mit dem in diesem Handbuch beschriebenen Regler **DCW 220** arbeiten zu lassen, wenn sie:

- > die grundlegenden Anweisungen zur Arbeitssicherheit und zum Unfallschutz kennen,
- > in der Benutzung des Geräts innerhalb seiner Umgebung geschult sind,
- > diese Anweisungen, Warnhinweise und Bedienvorschriften verstanden haben.

3) Schutz vor Gefahren

Die Montage und der Anschluss des Reglers **DCW 220** dürfen nur von fachkundigem, für diese Aufgabe qualifiziertem Personal durchgeführt werden. Die Montage muss gemäß den geltenden Sicherheitsnormen und -vorschriften erfolgen!

Schalten Sie immer die Hauptstromversorgung ab, bevor Sie das Gerät öffnen oder an den Relaisausgängen arbeiten!

Öffnen Sie niemals das Gehäuse, während das Gerät mit Spannung versorgt wird! Wartungs- und Reparaturarbeiten dürfen nur von geschultem Fachpersonal durchgeführt werden!

Wählen Sie den Einbauort des Reglers unbedingt in einer geeigneten Umgebung!

Montieren Sie den Schaltkasten des Regler **DCW 220** nur in einer sicheren Umgebung und schützen Sie ihn vor Spritzwasser sowie vor Chemikalienspritzern. Montieren Sie ihn an einem trockenen, gut belüfteten und isolierten Ort.

Außer den Relaisausgängen müssen alle Eingänge/Ausgänge an Sicherheits-Niederspannung angeschlossen werden. Diese Spannung wird in der Regel vom Regler geliefert und beträgt maximal 24 V Gleichspannung.

Vergewissern Sie sich, dass die mit dem Regler verwendeten Sensoren zu den eingesetzten Chemikalien passen. Beachten Sie hierzu die technischen Hinweise jedes einzelnen Sensors. Wasserchemie ist sehr komplex. Bitte fragen Sie im Zweifelsfall umgehend unseren technischen Service oder Ihren autorisierten Monteur/Händler.

Chemische Sensoren sind empfindliche Elemente mit Verschleißteilen. Sie müssen regelmäßig überwacht, gewartet und kalibriert werden, wobei spezielle Kalibriersysteme zu verwenden sind, die nicht mit diesem Gerät geliefert werden. Bei einer Fehlfunktion besteht die Gefahr der Überdosierung von Chemikalien. Schließen Sie im Zweifelsfall einen Servicevertrag bei Ihrem Monteur/Händler oder bei unserem technischen Service ab. Weitere Informationen erhalten Sie bei Ihrem autorisierten Monteur/Händler oder unserem Kundendienst.

4) Beschriftung und Anbringung des Typenschilds

1 Logo des Herstellers	Besondere Risiken: Lesen Sie das Handbuch
2 Gerätemodell	(10) Recycelbares Produkt
3 Artikelnummer des Produkts	(11) Begrenzung gefährlicher Stoffe
4 Stromversorgung	(12) EG-Konformität
5 Maximale Stromstärke	(13) Herkunftsland
6 Schutzart	(14) QR-Code des Herstellers
7 Angabe des Herstellers	(15) Konformität mit FCC Teil 15 Klasse B
8 Seriennummer	

5) Entsorgung und Konformität

Die wiederverwertbare Verpackung des Reglers **DCW 220** muss entsprechend den geltenden Vorschriften entsorgt werden.

Papier, Pappe, Kunststoff sowie andere wiederverwertbare Bestandteile müssen zu einer geeigneten Sortierstelle gebracht werden.

Dieses Symbol bedeutet, dass Elektrogeräte gemäß der europäischen Richtlinie 2002/96/EG ab dem 12. August 2005 nicht mehr zusammen mit Haushalts- oder Industrieabfällen entsorgt werden dürfen. Nach den geltenden Vorschriften sind die Verbraucher innerhalb der Europäischen Union ab diesem Datum verpflichtet, ihre gebrauchten Geräte an den Hersteller zurückzugeben, der sich kostenlos um die Entsorgung kümmert.

Sammlung und Recycling der verbauten Batterien: Dieses Symbol bedeutet, dass gemäß der europäischen Richtlinie 2006/66/EG ab dem 26. September 2006 Altbatterien, Altakkumulatoren und Altmaterialien, die gefährliche Schwermetalle wie Blei (Pb), Cadmium (Cd) oder Quecksilber (Hg) enthalten, vom Hersteller oder einer akkreditierten Stelle getrennt gesammelt werden müssen.

RoHS COMPLIANT

Dieses Symbol bedeutet, dass der Regler **DCW 220** gemäß der europäischen Richtlinie 2002/95/EG in Übereinstimmung mit den Beschränkungen für gefährliche Stoffe konstruiert wurde.

 (ϵ)

Dieses Symbol bedeutet, dass das Gerät gemäß der Niederspannungsrichtlinie (2006/95/EG) und der Richtlinie über die elektromagnetische Verträglichkeit (2004/108/EG) in Übereinstimmung mit den vorgenannten Richtlinien entwickelt wurde.

Dieses Symbol bedeutet, dass das Gerät gemäß Teil 15 der FCC-Vorschriften (Federal Communications Commission) unter Einhaltung der Grenzwerte und Bedingungen für ein digitales Gerät der Klasse B getestet und zugelassen wurde.

III. Erläuterung der Benutzerschnittstelle des Reglers DCW 220

1) Display und Tastatur

_				
	Active Cl	NO bH		
	2.03 	6.23 "	Esc – OK Esc – Start/Stop	
	us	B MASS STORAGE		
DOSAControl DCW 220				

Taste Menu:

Aufrufen des Benutzermenüs

Taste Kalibrierung:

Aufrufen des Bildschirms für die Parameterkalibrierung

Taste **START/STOP**:

- Starten oder Stoppen des Dosiervorgangs
- Quittieren anstehender Alarme.

Taste **Esc**:

- Langes Drücken auf den Hauptbildschirm verkürzt die Polarisationsverzögerung aller Sensoren
- Verlassen des Menüs während der Navigation.

Sc

Taste **OK**:

- Reihenfolge der Parameter auf dem Hauptbildschirm umkehren
- Werte und Einstellungen prüfen
- Beim Navigieren Menü öffnen

- B Taste +:

- Wert erhöhen oder obere Option wählen
- Aufwärts oder zurück zum vorherigen Menü navigieren
- Bildschirmkontrast auf dem Hauptbildschirm erhöhen

Taste -:

- Wert verringern oder untere Option wählen
- Abwärts oder weiter zum nächsten Menü navigieren
- Bildschirmkontrast auf dem Hauptbildschirm verringern

2) Interne Anschlüsse

3) <u>Klemmenplan</u>

Programmierungsanleitung für DCW 220

IV. Aufbau und Verzeichnis der Menüs

1) Aufbau der Menüs

Der Regler **DCW 220** verfügt über 3 Menüstufen, die jeweils mit einem Zugangscode vor Änderungen durch Unbefugte geschützt werden können. Vom normalen Anwendermenü bis zum Expertenmenü gewährt der Regler so einen gestaffelten Zugriff auf die Programmfunktionen, ohne die beim Einsatz von Chemikalien erforderliche Sicherheit und den Schutz von Personen außer Acht zu lassen.

- > Benutzermenü: Zugriff auf die Kalibrierungsfunktionen und die Standardnutzung.
- > Technikermenü: Zugriff auf Sollwerte, Alarme und technische Funktionen.
- > Expertenmenü: Umfassender Zugriff auf die Systemkonfiguration und strukturelle Funktionen.

Zugriffsebene	Funktion	Seite
	Zugriff auf das Technikermenü	19
	Sprachauswahl	20
Poputzor	Einstellung Echtzeituhr	21
Denutzei	Schnittstellenverwaltung	22
	Informationen (Softwareversion, Sensorkonfiguration u.a.)	25
	Wartung (nach Aktivierung im Expertenmenü)	26
	Zugriff auf das Expertenmenü	30
	Technikercode	31
	Aktive Timer	32
	Sensorkalibrierung	35
Techniker	Sollwerte	41
reenniker	Durchflusseinstellungen	47
	Dosiertankeinstellungen	48
	Technische Alarme	49
	Analogausgänge	51
	Datenaufzeichnungsmanagement	52
	Expertencode	53
	Definition der Analogeingänge	54
	Chemische Berechnungen	63
	Konfiguration von Strömungsschalter und Durchflussmesser	65
Experte	Tankleermelder	67
	Externe Freigabe aktiv	68
	Relaisdefinition	73
	Definition der Analogausgänge	82
	Parameteranzeige	84
	Kommunikationsschnittstellen	87

2) Baumstruktur und Verzeichnis der Menüs

V. Anzeigemodi

▶ Wählen Sie den Anzeigemodus des Hauptbildschirms.

> Vertikalansicht 2V

Drücken Sie die Taste OK

, um die Reihenfolge der angezeigten Parameter umzukehren.

Horizontalansicht 2H

1) Symbole und Betriebsstatus

Symbole in der Statusleiste

- RS485-Kommunikation aktiv.
- ලිද Ein Timer ist aktiviert. Parameter mit Timern können Regelungen und Alarme auslösen.

In der Mitte des Symbols wird die Anzahl der aktiven Timer als blinkende Ziffer dargestellt.

EIN → Das Gerät ist EINgeschaltet; Regelungen und Alarme sind möglich.

AUS → Das Gerät ist AUSgeschaltet; Regelungen, Alarme, Relais und Analogausgänge sind deaktiviert.

Status des Parameterkanals \triangleright

<u>Messwert</u>

Status des Messkanals

- Oberer Grenzwert überschritten
- Unterer Grenzwert unterschritten
- Sensor fehlerhaft, außerhalb des Messbereichs oder nicht angeschlossen
- Dosierzeit überschritten oder Tankleermeldung
- Regelung durch einen Timer unterbrochen
- Externe Freigabe aktiv
- Wasserdurchfluss unterbrochen
- Sensor läuft an
- ݱݵݑ⊕⊒◙▸∄᠉ゑ养 Sensorkalibrierung erforderlich
- ,∧7 Messwert instabil

<u>Kontrollbalken</u>

- ➔ Regelung gestoppt
- ➔ Kein Sollwert programmiert
- ➔ Regelung des Parameters pausiert
- ➔ Keine Behandlung erforderlich
- → Behandlung läuft mit 42,8% Dosierkapazität
- → Keine Regelung. Parameter im Alarmmodus!
VI. Benutzermenü

In diesem Menü können Sie die Grundeinstellungen ändern und die aktuelle Konfiguration einsehen.

Drücken Sie die Taste um das Benutzermenü aufzurufen. Sie haben nun Zugriff auf das Benutzermenü.

1) Zugriff auf das Technikermenü

Von diesem Bildschirm aus können Sie das Technikermenü aufrufen.

Nach Eingabe eines Technikercodes:

2) Einstellen der Sprache

► Gehen Sie zum Bildschirm "**Sprache**".

► Wählen Sie Ihre Sprache.

- 3) Einstellen von Datum und Uhrzeit
- ► Gehen Sie zum Bildschirm "Datum&Uhrzeit".

► Geben Sie das aktuelle Datum und die Uhrzeit ein.

- 4) Schnittstellenverwaltung
- ► Gehen Sie zum Bildschirm "Schnittstelle".

a) Kontrast

c) Blinken

Mit dieser Funktion können Sie ein Blinken des Bildschirms bei einem Alarm einstellen. Sie können wählen, welche Alarme ein Blinken auslösen sollen.

► Klicken Sie das Kästchen an, um die Blinkfunktion zu aktivieren.

	Schnittste Display	lle Ton
_	Kontrast	050 🔶 %
ок	Helligkeit	100 🔷 %
	Blinken	ici p fix

▶ Wählen Sie, welche Alarme das Blinken auslösen sollen.

Schnittste	lle Ton
Kontrast	50 🔶 %
Helligkeit	100 🔷 %
Blinken -	
	Schnittste Display Kontrast Helligkeit

Im Beispiel blinkt das Display bei einem Sensorfehler.

- Oberer Grenzwert überschritten
- Unterer Grenzwert unterschritten
- Ð. Sensor fehlerhaft, außerhalb des Messbereichs oder nicht angeschlossen
- Dosierzeit überschritten oder Tank leer
- Regelung durch einen Timer unterbrochen
 - Externe Freigabe aktiv
 - Wasserdurchfluss unterbrochen
 - Wartezeit wegen Sensoranlauf

Drücken Sie eine beliebige Taste auf dem Hauptdisplay, um einen anstehenden Alarm zu quittieren.

d) Tonsignal

Diese Funktion erzeugt beim Drücken einer Taste ein Tonsignal.

	Schnittstelle Display Ton
	Tonsignal
ок	Alarm

e) Alarm

Diese Funktion erzeugt ein Tonsignal beim Auftreten eines Alarms. Sie können wählen, welche Alarme ein Tonsignal auslösen sollen.

▶ Klicken Sie das Kontrollkästchen an, um die Alarmfunktion zu aktivieren.

	Schnittstelle Display Ton
ок	
	Viederbolen

▶ Wählen Sie, welche Alarme ein Tonsignal auslösen und in welchem Intervall das Signal wiederholt werden soll.

Im Beispiel ertönt alle 5 Sekunden ein Alarmsignal, wenn kein Wasser fließt.

- Oberer Grenzwert überschritten
- Unterer Grenzwert unterschritten
- Sensor fehlerhaft, außerhalb des Messbereichs oder nicht angeschlossen
- Dosierzeit überschritten oder Tank leer
 - Regelung durch einen Timer unterbrochen
- Externe Freigabe aktiv
- Wasserdurchfluss unterbrochen
- Wartezeit wegen Sensoranlauf

Drücken Sie eine beliebige Taste auf dem Hauptdisplay, um einen anstehenden Alarm zu quittieren.

6) <u>Info</u>

Auf diesem Bildschirm wird Ihnen eine Zusammenfassung der Konfiguration gezeigt.

► Gehen Sie zum Bildschirm "**Info**".

	📩 Benutzermenü		Info	
Menu	Info	ок	Bezeichnung ID Version Sprache	DCW 220 14025364 0.03 Deutsch
	Seriennr., Konfiguration, Einstellungen		Messung E1 Messung E2	Fr. Chlor pH
			POT	

► Mit

können Sie durch alle Informationen scrollen.

Allgemeine Informationen:

Bezeichnung	Name des Geräts
ID	Seriennummer
Version	Softwareversion
Sprache	Gewählte Sprache
Regelung/Messung E1	Für E1 gewählter Parameter
Regelung/Messung E2	Für E2 gewählter Parameter

Sensorinformationen:

POT/RTD/IN1/IN2/K1/K2		
Тур	Art der Messung	
Signal	Signalwert des Sensors	
Mes	Messwert	
Ref	Referenzbezeichnung Ihres Sensors	
Nennsteilheit	Nennsteilheit der Kalibrierung	
Drift	Drift der Nennsteilheit, 0% bedeutet, dass Ihr Sensor perfekt ist	
Offset	Kalibrierungs-Offset	
Nullpunkt	Isopunkt Ihres Sensors	

Schalterinformationen:

IN1/IN2/K1/K2		
Тур	Schalter	
Status	Offen/Geschlossen	
Funktion	Schaltfunktion: NO/NC	

Common (COM)

Vref	Versorgungsspannung der Klemmen IN1, IN2 und Verf: 12V/24V

7) <u>Funktionstest</u>

Mit dieser Funktion können Sie die Regler-Schnittstellen testen. Aktivieren Sie diese Funktion, um beispielsweise die Relais zu testen oder ein Analogsignal zu erzeugen.

Es wird dringend empfohlen, vor der Nutzung des Steuergeräts mit Hilfe dieser Funktion zu überprüfen, ob alle Systeme normal funktionieren. Denken Sie daran, diese Funktion nach dem Abschluss der Tests wieder zu deaktivieren!

Vorsicht! Beim Funktionstest können die Relais und Analogausgänge angesteuert werden. Stellen Sie sicher, dass im Rahmen des Tests keine Chemikalien dosiert werden.

Nach Abschluss des Funktionstests werden alle Befehle und Änderungen annulliert.

Der Funktionstest im Rahmen der Wartungsfunktion steht nur im Expertenmenü zur Verfügung.

► Gehen Sie zum Bildschirm "Wartung".

a) Relais

Durch das Aktivieren oder Deaktivieren der Relais starten oder stoppen Sie die Dosierorgane. Sorgen Sie dafür, dass keine Beschädigungen oder Gesundheitsgefahren entstehen können.

Die Impulssteuerung kann nicht simuliert werden. Es wird lediglich ein Impuls durch das gewählte Relais erzeugt.

Die "PWR"-Relais P3 und P4 sind selbstgespeiste Relais, d.h. diese Relais sind an die Hauptstromversorgung angeschlossen. Prüfen Sie deren Funktionsfähigkeit mit einem geeigneten Messgerät.

₽ V I	<i>l</i> artung Relais <mark>Ein</mark>	gänge/	Ausgänge
_Γ RCT	۲ ۰		
P1		P2	
	२.~ग		
P3		P4	
۲ ELC	к ——		
R1		R2	
R3		R4	

▶ Wählen Sie mit

das Relais, das Sie ansteuern möchten, und drücken Sie auf OK um es zu öffnen oder zu schließen.

a) Eingänge

Auf diesem Bildschirm können Sie die Messwerte an den Eingängen sehen, sowie deren Entsprechung in pH beim potentiometrischen Eingang "POT" sowie in °C beim Widerstandsthermometer-Eingang "RTD", vorausgesetzt, Sensorsteilheit und Offset sind korrekt erfasst.

Wa Rel	artung lais Eingänge	Ausgänge
POT	-29mV	7.96pH
RTD	1080hm	22°C
IN1	8.4mA	
IN2	0.0mA	

a) Analogausgänge

Durch die Ansteuerung eines Analogausgangs kann ein Dosierorgan aktiviert oder ein Analogsignal ein die ZLT oder ein lokales Aufzeichnungssystem gesendet werden. Treffen Sie die notwendigen Vorkehrungen, um Gefahren durch den Funktionstest zu verhindern!

Nach dem Funktionstest werden alle Analogausgänge wieder auf die ursprüngliche Einstellung zurückgesetzt. (Also auf "0mA" bei 0...20mA-Ausgängen, auf "4mA" bei 4...20mA-Ausgängen oder auf Hemmung, wenn dies so programmiert wurde.)

- ▶ Prüfen Sie den Analogausgang mit einem Messgerät.
- b) Schalter

Auf diesem Bildschirm wird die Stellung der Digitalausgänge dargestellt.

c) RS485-Schnittstelle

Auf diesem Bildschirm können Sie die korrekte Konfigurierung der Kommunikation über die RS485-Schnittstelle prüfen.

Wartung Ausgänge	Schalter COM
NO-COM	0B/s

Statusmeldung		
NO-COM	Keine Aktivität oder Kabel ausgesteckt	
ERR-RS485 Übertragungsgeschwindigkeits- oder		
	Paritätsfehler, Adern vertauscht	
ERR-MODBUS Register oder Funktion nicht verfügbar, prü		
	die Registertabelle	
COM-OK	Kommunikation OK	
	•	

Prüfen Sie bei Fehlerzustand die Einstellungen im Expertenmenü/Kommunikation.

VII. Technikermenü

In diesem Menü können alle grundlegenden Konfigurationen geändert werden, die auf Technikerebene freigegeben sind. Diese Konfigurationen greifen nicht in die technische Struktur des Reglers ein.

Beim Aufrufen des Technikermenüs werden alle Dosiervorgänge gestoppt!

Wenn der Zugriff durch einen unbekannten Code geschützt ist, wenden Sie sich bitte an Ihren Händler!

1) Zugriff auf das Expertenmenü

Drücken Sie die Taste um das Benutzermenü aufzurufen. Sie haben nun Zugriff auf das Benutzermenü.

Nach Eingabe eines Expertencodes:

2) <u>Technikercode</u>

Ändern oder Löschen des Zugangscodes zum Schutz dieser Menüebene.

a) Zugangscode ändern

Mit diesen Schritten können Sie den Zugangscode ändern.

Technikermenü	Technikermenü Neuen Code wählen Z E
 Geben Sie mit einen ne b) Löschen des Techniker-Codes 	euen Code ein und bestätigen Sie mit OK

Sie können den Techniker-Code wie folgt löschen und das Menü frei zugänglich machen.

► Geben Sie "0000" ein, um den aktuellen Code zu löschen.

3) Aktive Timer

Sie können für Ihren Regler Standardarbeitszeiten festlegen. Während dieser Arbeitszeiten erscheint in der Statusleiste eine Uhr, die den Benutzer über den aktiven Timer informiert.

-(63)

Timer mit blinkender Nummer

► Gehen Sie zum Bildschirm "Aktiver Timer".

a) Einsatz der Timer

Mit dieser Funktion können Sie auswählen, für welche Parameter Timer verwendet werden, um die aktive Zeit zu definieren.

Wenn Sie wählen, hängt der Parameter (Regelung und Alarm) nicht von einem Timer ab. Wenn Sie IM I wählen, arbeitet der Messkanal nur, wenn mindestens ein Timer programmiert und aktiv ist.

▶ Wählen Sie, wann der Timer aktiv sein soll.

Nie	Der Timer wird nicht verwendet		
Immer	Es gibt kein Enddatum, Ihre Timer-Einstellung wird immer wiederholt		
Von/bis	Sie können das Start- und Enddatum auswählen; Ihr Timer ist dann nur in diesem Zeitraum aktiv		

- ► Stellen Sie die Aktivzeit des Timers ein.
- ► Stellen Sie den Zeitraum ein.
- ► Stellen Sie die Arbeitstage des Timers ein.
- ► Stellen Sie das Wiederholungsintervall ein.

Start und **Ende** legen fest, in welchem Zeitfenster der Timer aktiv ist. **Von** und **bis** regeln, von welchem Tag an und bis zu welchem Tag diese Aktivzeit gilt.

Die Schaltflächen "**MDMDSS**" stehen für die einzelnen Wochentage. Hier können Sie wählen, an welchen Wochentagen die Aktivzeit gilt.

Zusätzlich können Sie das Wiederholungsintervall für die so programmierte Woche festlegen.

^(*) ۲1				
Wann	Von/	bis		
Start	08:00	von	01/06/16	
Ende	21:30	bis	30/06/16	
MDMDFSS				
Alle 2	Woche((n)		

Bei den Einstellungen im oben dargestellten Bildschirm gilt: Das Zeitfenster **startet** um 8.00 Uhr und **endet** um 21.30 Uhr im Zeitraum **vom** 1. Juni 2016 **bis** zum 30. Juni 2016, und die aktiven Wochentage sind Dienstag und Freitag.

Das Intervall wurde auf 2 Wochen eingestellt, somit sind die folgende Wochen freigeschaltet:

- 1. 5.6.
- 13. 19.6.

27. – 30.6.

Juni						
Μ	D M D F S S					S
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30			

Terminiert sind also der 3., 14., 17. und 28. Juni und der Timer ist von 8 Uhr bis 21.30 Uhr aktiv.

4) Kalibrierung der Sensoren

Mit diesem Verfahren können Sie die einzelnen Sensoren kalibrieren. Es gibt verschiedene Optionen:

- > 1-Punkt: Anpassung des Wertes anhand einer Messung.
- 2-Punkt: Anpassung von Nennsteilheit/Offset anhand von 2 unterschiedlichen Pufferlösungen (nur für pH- und Redox-Sensoren)
- > Offset: Offset-Anpassung des Sensors
- > Nennsteilheit (Steigung): Anpassung der Nennsteilheit des Sensors
- > Reset: Löschen von Nennsteilheit und Nullpunkt und Rücksetzen auf Werkseinstellungen
- > Puffertemp.: Festlegung der Puffertemperatur bei temperaturabhängigen Sensorwerten
 - ► Gehen Sie zum Bildschirm "Sensorkalibrierung".

► Wählen Sie den Sensor und die Kalibrierungsmethode.

a) 1-Punkt

Für eine korrekte Kalibrierung muss die Messung stabil sein. Die Balkenanzeige sagt Ihnen, ob die Messung stabil genug ist. Bei mangelnder Stabilität erscheint während des Kalibriervorgangs ein Nachrichtenfenster mit der Aufforderung, die Kalibrierung zu wiederholen.

b) 2-Punkt

Für diese Kalibriermethode benötigen Sie zwei Pufferlösungen.

- ► Entfernen Sie den Sensor aus der Durchflussarmatur.
- ► Reinigen Sie ihn.
- ► Tauchen Sie die Sensorspitze in die erste Pufferlösung ein.
- ► Setzen Sie den ersten Kalibrierungspunkt.

- ► Reinigen Sie die Sensorspitze.
- ► Tauchen Sie die Sensorspitze in die zweite Pufferlösung ein.
- ► Setzen Sie den zweiten Kalibrierungspunkt.

Nach erfolgreicher Kalibrierung wird einige Sekunden lang ein Ergebnisbildschirm angezeigt.

ф∙ф РОТрН	ł
Sensor Kalibriert Roh	7.00pH 7.01pH
Sensor	eit -
Offset Isopunkt Drift	-0.342mV 7.006pH -0.98%

a) Offset

b) Nennsteilheit

Wählen Sie zur Kalibrierung der Nennsteilheit einen möglichst hohen Wert aus, der weit von Null entfernt liegt.

c) Reset

Mit dieser Funktion können Sie die aktuell kalibrierte Nennsteilheit und den Offset des Sensors auf die Werkswerte zurücksetzen.

Sie müssen diesen Vorgang durchführen, wenn Sie den Sensor wechseln oder falsch kalibriert haben.

d) Puffertemp.

Mit dieser Funktion können Sie die Temperatur der Kalibrierungspufferlösung festlegen. Diese Funktion ist nur bei temperaturabhängigen Sensoren verfügbar.

Lagern Sie die Pufferlösung bei Raumtemperatur.

► Wählen Sie die Quelle für die Temperaturmessung.

Wenn Sie einen Temperatursensor definiert haben, können Sie diesen verwenden, aber Sie können die Temperatur auch manuell einstellen.

- ► Stellen Sie die Temperatur ein.
- ► Wählen Sie die Temperatureinheit.

5) <u>Regelungseinstellungen</u>

Mit diesem Verfahren können Sie die Parametereinstellungen verändern.

► Gehen Sie zum Bildschirm "**Regelung**".

▶ Wählen Sie den Parameter, den Sie einstellen möchten.

a) Wählen Sie die Berechnungsmethode

	E1 Ein	Fr. Chlor stellung Dosierung	Inaktiv	Der Parameter befindet sich im reinen Messmodus, es findet keine Regelung statt.
+ ок	Modus	Inaktiv Inaktiv Hysterese Grenzwert P.I.D.	Hysterese	Dieser Modus ist eine Ein/Aus-Regelung, wobei die Hysterese den Abstand zwischen zwei Werten, die um den Sollwert herum zentriert sind, beschreibt. Liegt der Messwert über dem höchsten Punkt, steuert die Regelung das Stellglied nach unten, liegt der Messwert unter dem niedrigsten Punkt, steuert die Regelung das Stellglied nach oben.
			Grenzwert	In diesem Modus konnen Sie zwei Grenzwerte festlegen, bei deren Erreichen nach unten bzw. nach oben geregelt wird.
			P.I.D.	Bei diesem Modus handelt es sich um eine lineare Berechnung; die Antriebssteuerung basiert auf drei Komponenten, dem P-Glied (proportional), dem I-Glied (integral) und dem D-Glied (derivativ).

b) Hysterese-Modus

- ► Stellen Sie den Sollwert ein.
- ► Stellen Sie die Hysterese ein.

***	Regelsollwert
Hyst.	Hysteresewert

c) Grenzwertmodus

► Stellen Sie den unteren und den oberen Grenzwert ein.

÷	Definierter Grenzwert, der die Abwärtsregelung auslöst.		
Ϋ́	Definierter Grenzwert, der die Aufwärtsregelung auslöst.		

d) P.I.D.-Modus

Die Differenz zwischen dem Sollwert w und der Stellgröße (Messwert) x führt zu einer Regelabweichung, die durch einen Neutralbereich gefiltert wird.

Der Neutralbereich **A** dient zur Unterdrückung zu geringfügiger Regelabweichungen. Die so gefilterte Regelabweichung wird nun dem eigentlichen PID-Regler zugeführt, der sich auf der Grundlage der Werte **P** (proportional), **I** (integral) und **D** (derivativ) aus drei Anteilen zusammensetzt (von oben nach unten). Der I-Anteil (grün) enthält auch den Anti-Windup-Mechanismus zur Begrenzung des Integrators. Die Summe der 3 Anteile ergibt die Stellgröße, die je nach Einstellung der Relais und Stromausgänge **B** (-100% bis 0% oder 0% bis +100% oder -100% bis +100%) begrenzt wird.

	m E1	Fr. Chlor		***	Regelsollwert
-		nstell Dosi	e	Хр	Reziprok proportionaler Wert. Wenn die
A	Modu	P.I.D.			Abweichung (w-x) gleich Xp ist, beträgt die
	+++	2.00 🔶	ppm		Antriebsvariable 100 %; eine Verringerung von Xp
ок	Хр	0.50	maa		fuhrt zu einem starkeren Antrieb der Pumpen bei
			ppm		gleicher Abweichung.
	Xd	0.00 🗲	ppm		0,4/00% der Messskala
	Ті	0	S	Xd	Neutrales Totband. Liegt die Abweichung unter
			C		diesem Wert, erfolgt keine Ansteuerung.
	la		5		020% der Messskala
				Ті	Nachstellzeit, kann einen Offset eliminieren. Wird eine Nachstellzeit programmiert, sollte sie mindestens so lange wie die Rückkopplungszeit sein. 09999s
				Td	Vorhaltezeit, reduziert das Überschwingen des Reglers. 0250s

a) Einstellung der Dosierung

Auf diesem Bildschirm können Sie eine Grundlast für die berechnete Antriebsvariable festlegen. Sie können auch eine maximale Dosierdauer festlegen, um eine Überdosierung im Fall von Rückkopplungsproblemen zu verhindern.

E1 Fr. Chlor Einstellung Dosierung Grundlast +0 % Regelzeit Max. Zeit 0 ♦ s	Grund- last	Dieser Wert wird zum errechneten Regelbedarf addiert. Die Grundlast ist ein positiver oder negativer Wert, je nach Regelungsrichtung. Ein positiver Wert fügt dem Stellglied eine Last hinzu, wodurch der Messwert erhöht wird. -30+30%
Grenzwert 0 7 %	Regel- zeit Max.	Wenn Sie diese Option aktivieren, wird die Antriebsvariable vor dem Addieren der Grundlast geprüft. Zeitbegrenzung für die Dosierung außerhalb der
	Zeit	Grenzwerte. Bei Überschreitung wird ein Dosierzeitalarm (Überdosiswarnung) ausgelöst. 09999s
	Grenz- wert	Grenzwert für die Antriebssteuerung, ab dessen Überschreitung die Dosierzeit (Regelzeit) läuft. 090%

Beispiel: Grundlast + 10% Max. Zeit 900 s Grenzwert 5 %

Wenn der Sollwert erreicht ist und der Dosierbedarf somit bei 0% liegt, läuft die Dosierzeit nicht, da sich der Wert des Dosierbedarfs unterhalb des Grenzwerts befindet. Nach Addition einer Grundlast von 10% lautet der Dosierbefehl 0% + 10% = 10%

Wenn der Dosierbedarf 8% beträgt, liegt dieser Wert über dem Grenzwert von 5%. Die Dosierzeit läuft somit und wenn der Bedarf länger als 900s über diesem Grenzwert bleibt, wird der Alarm für die Dosierzeitüberschreitung (Überdosiswarnung) ausgelöst. Der Dosierbefehl nach Addition der Grundlast liegt bei 8% + 10% = 18%

Wenn der Dosierbedarf -6% beträgt, liegt dieser Wert über dem Grenzwert von 5% (absoluter Wert). Die Dosierzeit läuft somit, und wenn der Bedarf länger als 900s über diesem Grenzwert bleibt, wird der Alarm für die Dosierzeitüberschreitung ausgelöst. Der Dosierbefehl nach Addition der Grundlast liegt bei -6% + 10% = 4%

Halten Sie die Taste gedrückt, um den Alarm für die Dosierzeitüberschreitung zu quittieren.

6) <u>Durchflusseinstellungen</u>

Auf diesem Bildschirm können Sie einen Mindestdurchflusswert festlegen, um Messungenauigkeiten durch fehlenden oder zu geringen Durchfluss zu verhindern.

Außerdem können Sie zwei Durchflusswerte festlegen, die zur proportionalen Kompensation der Antriebsvariablen dienen.

► Gehen Sie zum Bildschirm "**Durchfluss**".

▶ Wählen Sie den Parameter, den Sie einstellen möchten.

Die Liste enthält nur Parameter, deren Regelung im Regler-Bildschirm aktiviert ist, und Sie können die Einstellungen nur bearbeiten, wenn ein Durchflussmesser im Bildschirm "Eingänge" definiert wurde.

- ► Stellen Sie den Mindestdurchflusswert ein.
- ► Stellen Sie die beiden Durchflusswerte für die proportionale Regelung ein.

$A = \frac{Q}{Q_{max}}$	$\frac{Q_{min}}{\alpha - Q_{min}} \qquad \text{wobei} Q \in [Q_{min}; Q_{max}] ->$	d = u >	< A
Qmin	Einer Verstärkung von 0% entsprechender Durchfluss	А	Durchflussproportionale Verstärkung
Qmax	Einer Verstärkung von 100 % entsprechender Durchfluss	u	Antriebsvariable
Q	Durchflusswert	d	Stellgliedvariable

7) <u>Tank-Einstellungen</u>

Auf diesem Bildschirm können Sie den Füllstand festlegen, ab welchem eine Tankleermeldung ausgegeben wird.

► Gehen Sie zum Bildschirm "**Tank**".

▶ Wählen Sie den Parameter, den Sie einstellen möchten.

Die Liste enthält nur Parameter, deren Regelung im Regler-Bildschirm aktiviert ist, und Sie können die Einstellungen nur bearbeiten, wenn ein Volumensensor im Bildschirm "Eingänge" definiert wurde.

8) <u>Alarme</u>

Auf diesem Bildschirm können Sie festlegen, ab welchen Messwerten Alarme ausgelöst werden und unter welchen Bedingungen der Regler stoppt.

► Gehen Sie zum Bildschirm "Alarm".

▶ Wählen Sie den Parameter, den Sie einstellen möchten.

▶ Passen Sie die Grenzwerte an.

E1 Er. Chlor	[;ੈ	Oberer Alarmwert einer Messung.			
	[. <u>.</u>]	Unterer Alarmwert einer Messung.			
Grenzwert	Hyst.	Hysterese für die Auslösung der beiden Alarme			
🖈 3.00 ♦ ppm		bei Erreichen des oberen oder unteren			
		Alarmwerts.			
0.10 ppm	Verzög.	Mindestdauer der Überschreitung des			
Hyst. 0.10 → ppm		Grenzwerts bis zum Auslösen des Alarms.			
Verzög. 2 🔶 ppm					
Reglerstopp					

- Oberer Grenzwert überschritten
- Unterer Grenzwert unterschritten
- Sensor fehlerhaft, außerhalb des Messbereichs oder nicht angeschlossen
- Dosierzeit überschritten oder Tank leer

Wenn ein Alarm den Regler stoppt, müssen Sie die Ursachen beheben und die Steuerung durch Drücken und Halten der Taste wieder starten.

Programmierungsanleitung für DCW 220

9) Analogausgänge

Auf diesem Bildschirm können Sie die Arbeitsbereiche der Analogausgänge einstellen.

► Gehen Sie zum Bildschirm "Analogausgang".

▶ Wählen Sie den Parameter, den Sie einstellen möchten.

Sie können nur die Analogausgänge bearbeiten, die im "Expertenmenü" aktiviert wurden.

► Passen Sie den oberen Punkt "20 mA" und den unteren Punkt "0/4 mA" an den Arbeitsbereich Ihres Stellglieds oder an Ihren Messbereich an.

Ist die im "Expertenmenü" gewählte Analogausgangsart auf "Regelung" eingestellt, wird der Bereich in Prozent der Antriebsgröße angegeben.

10) Datenaufzeichnung

Der Regler **DCW 220** hat für die Aufzeichnung von Messungen, berechneten Parametern und Ereignissen einen internen Speicher. Die Daten können auf einen USB-Stick kopiert werden.

Der interne Speicher des Geräts ermöglicht es, Daten zu speichern, ohne dass ein USB-Stick eingesteckt ist. Wenn Sie einen Stick anschließen, wird der Inhalt des internen Speichers mit allen bisherigen Aufzeichnungen auf den Stick übertragen.

Je länger das Speicherintervall ist, desto länger haben Sie Zeit, um den Stick abzuziehen, die Daten auf Ihren Computer übertragen und den Stick wieder in das Gerät einzustecken.

Mit dieser Formel können Sie berechnen, wie lange Sie für die Übertragung auf den Computer Zeit haben:

Zeit ohne Verbindung X = 15min (Bereich / 30s)

Beispiel: Wenn das von Ihnen gewählte Zeitintervall 30 Sekunden beträgt, bietet der interne Speicher für 15 Minuten Speicherplatz. Beträgt das Intervall 900 Sekunden, reicht der interne Speicherplatz für 7,5 Stunden.

VIII. Expertenmenü

In diesem Menü können Experten die gesamte Gerätekonfiguration verändern:

- > Definition der an die Eingänge angeschlossenen Sensoren und Fühler
- > Durchführung von Parameterberechnungen anhand von Eingangswerten
- > Konfiguration der Bedingungen für die Funktion der Regler
- Konfiguration der Tankleermeldung
- > Programmierung der externen Freigabe
- Verwendung der Relais
- Verwendung der Analogausgänge
- > Einstellung der Bildschirmdarstellung
- > Definition von Kommunikationsarten und -modi
- > Initialisierung der Regler-Konfiguration

1) Expertencode

Ändern oder Löschen des Zugangscodes zum Schutz dieser Menüebene.

a) Zugangscode ändern

Mit diesen Schritten können Sie den Zugangscode ändern.

b) Löschen des Experten-Codes

Sie können den Experten-Code wie folgt löschen und das Menü frei zugänglich machen.

► Geben Sie "0000" ein, um den aktuellen Code zu löschen.

2) <u>Eingänge</u>

In diesem Menü können Sie festlegen, welcher Sensor oder Fühler an den Eingängen angeschlossen ist.

- ā Expertenmenü Benutzermenü Technikermenü A A ľ ļ ¢•¢ € £Α (2)-Kl Expertenzugang Technikermenü Expertenmenü ΟΚ OK Nützliche Einstellungen Zugangscode für das Expertenmenü öffnen Expertenmenü festlegen öffnen POT Expertenmenü Eingänge ÷ Konfig Einstellungen POT inaktiv Inaktiv Тур **RTD** inaktiv D > ÷ OK OK Eingänge IN1 freies Chlor > Sensoren und Schalter IN2 inaktiv > konfigurieren K1 inaktiv > K2 inaktiv >
- ► Gehen Sie zum Bildschirm "Eingänge".

► Wählen Sie den passenden Eingang für den Sensor.

a) POT-Eingang konfigurieren

Dieser Eingang ist für den Anschluss potentiometrischer Sensoren vorgesehen. Vergewissern Sie sich, dass Ihr Sensor kompatibel ist, bevor Sie ihn verwenden.

► Wählen Sie den Sensortyp.

Inaktiv	Der Eingang ist deaktiviert
 рН	pH-Sensor
Redox	Redox-Sensor

▶ Wählen Sie die Sensorskala.

Die Liste der Sensoren hängt von der Art des Sensors ab, den Sie ausgewählt haben. Wenn Sie den kundenspezifischen Sensor **"Kunde**" auswählen, können Sie die Skala für diesen Sensor festlegen.

► Stellen Sie den Sensormessbereich mit "Min" und "Max" ein.

► Stellen Sie die Sensorsteigung "Nennsteilheit" ein (nur bei pH-Sensoren).

b) RTD-Eingang konfigurieren

Dieser Eingang ist für den Anschluss von pt100-Temperatursensoren vorgesehen. Vergewissern Sie sich, dass Ihr Sensor kompatibel ist, bevor Sie ihn verwenden.

► Wählen Sie den Sensortyp.

Typ Inaktiv Inaktiv	
Typ Inaktiv Inaktiv	
lyp lemp. ▼ C ▼	
Spezifikationen	
Sensor <u>-20110 °C ▼</u>	
Min -20 🌢	
Max 110	

c) IN1- und IN2-Eingang konfigurieren

Dieser Eingang ist für den Anschluss verschiedener Sensoren mit 0...20mA- oder 4...20mA-Messumformern vorgesehen. Vergewissern Sie sich, dass Ihr Sensor kompatibel ist, bevor Sie ihn verwenden.

► Wählen Sie den Sensortyp.

Inaktiv	Der Eingang ist deaktiviert		
Schalter	Verwendung des Eingangs als digitalen Eingang		
Fr. Chlor	Sensor zur Messung von freiem Chlor		
Aktivchlor	Aktivchlor		
GesCl	Gesamtchlor		
Chlorit	Chlorit		
CIO2	Chlordioxid		
H2O2	Wasserstoffperoxid		
BCDMH	Brom-Chlor-Dimethylhydantoin		
DBDMH	Dibrom-Dimethylhydantoin		
Fr. Brom	freies Brom		
PAA	Peressigsäure		
Ozon	Ozon		
02	Gelöster Sauerstoff		
РНМВ	Polyhexanid		
Trübung	Trübung		
LF	Leitfähigkeit		
Temp.	Temperatur		
Durchfluss	Durchflussmessung u. Regelungskompensation		
рН	Potential des Wasserstoffs		
Redox	Reduktions-Oxidations-Reaktion		
Volumen	Tankleermelder		

► Wählen Sie die Sensorskala.

Die Liste der Sensoren hängt von der Art des Sensors ab, den Sie ausgewählt haben. Wenn Sie den kundenspezifischen Sensor "**Kunde**" auswählen, können Sie die Skala für diesen Sensor festlegen.

► Wählen Sie die Einheit des Sensors.

► Wählen Sie die Sensorschnittstelle.

► Stellen Sie den Sensormessbereich mit "Min" und "Max" ein.

Der Messbereich hängt von den Spezifikationen Ihres Sensors ab. Achten Sie auf die Eingabe der richtigen Einstellungen.

Wenn Sie "Kunde" als Sensortyp wählen, wird die Nennsteilheit automatisch anhand des Messbereichs und der Sensorschnittstelle berechnet.

Verwendung des Analogeingangs als Digitaleingang:

► Wählen Sie als Typ **"Schalter**".

▶ Passen Sie die Stromgrenzwerte an.

<u> </u>	Liegt die Stromstärke unter dem Grenzwert, wird er Schalter als offen erkannt. 020mA
-~	Liegt die Stromstärke über dem Grenzwert, wird er Schalter als geschlossen erkannt. 020mA

► Wählen Sie die Schaltrichtung entsprechend der Anwendung.

► Stellen Sie die Entprellzeit ein; diese Verzögerung wird sowohl beim Schließen als auch beim Öffnen angewendet.

d) K1- und K2-Eingang konfigurieren

Dieser Eingang ist für den Anschluss digitaler Näherungssensoren oder potentialfreier Kontaktschalter vorgesehen. Vergewissern Sie sich, dass Ihr Sensor kompatibel ist, bevor Sie ihn verwenden.

► Wählen Sie den Sensortyp.

Inaktiv	Der Eingang ist deaktiviert
Schalter	Statuskontakt
Durchfluss	Gepulster Kontakt für Durchflussmesser

Verwendung eines digitalen Eingangs für den Status:

▶ Wählen Sie den Typ bei "Schalter".

► Wählen Sie die Stellung des Schalters.

► Wählen Sie die Entprellzeit.

Verzög.	Entprellzeit:
_	0240 s

Verwendung des digitalen Eingangs als Impulseingang (Durchflussmesser):

► Wählen Sie den Typ bei "**Durchfluss**".

Stellen Sie den K-Faktor ein.

	К	Berechnungsfaktor für den Durchfluss: 0,0012000 Imp/l oder Imp/m3
1		

 $\mathbf{\nabla}$

Berechnen Sie den K-Faktor so, wie es im Handbuch Ihres Durchflussmessers beschrieben ist.

► Stellen Sie den maximalen Durchfluss ein.

Min	Um einen Durchflussstopp anzuzeigen, müssen alle ausgewählten Schalter und der Durchflussmesser inaktiv sein.					
Max	Maximale Durchflussmenge des					
	Durchflussmessers:					
	0.00012000 [Durchflusseinheit]					

- e) Sensorverzögerung einstellen
 - ► Stellen Sie die Anfahrzeit ein.

		Anfahrzeit	0480min
	Anfahrzeit 0 🔶 min		
+ ок			
ŧ			
Di na	ese Verzögerung verhindert M Ich einer Unterbrechung des I	lessfehler des Sen Messwasserflusses	sors nach dem Einschalten des Geräts oder . Während dieser Phase blinkt das Symbol

Diese Verzögerung verhindert Messfehler des Sensors nach dem Einschalten des Geräts oder nach einer Unterbrechung des Messwasserflusses. Während dieser Phase blinkt das Symbol 🛣 auf dem Hauptbildschirm.

f) Vref-Versorgungsspannung konfigurieren

Mit dieser Funktion können Sie die Spannung an der Klemme Vref und an den Klemmen IN1 und IN2 einstellen. Achten Sie darauf, dass die Spannung nicht höher ist als die maximale Spannung für Ihre Sensoren.

► Wählen Sie die Zeile Vref mit der Taste OK

• Eingänge			🕀 Eingänge			🕂 Eingänge	
POT inaktiv	>		RTD inaktiv	>		RTD inaktiv	>
RTD inaktiv	>		IN1 freies Chlor	>		IN1 freies Chlor	>
IN1 freies Chlor	>	ок	IN2 pH	>	ок	IN2 pH	>
IN2 inaktiv	>		K1 Durchfluss	>		K1 Durchfluss	>
K1 inaktiv	>		K2 Schalter	>		K2 Schalter	>
K2 inaktiv	>		Vref	120 🗆		Vref	■24V

3) <u>Messung</u>

In diesem Menü können Sie die Messparameter festlegen. Diese Parameter können anhand der Werte von einem oder mehreren Sensoren ermittelt werden, die Sie im Menü Eingänge definiert haben.

- ۶¢ Expertenmenü Benutzermenü Technikermenü ę ≏<u></u>± ര ୍ଲ ţ A Ø \$•≎ [() £Λ -Kl Menu OK OK Expertenzugang Expertenmenü Technikermenü Zugangscode für das Nützliche Einstellungen Expertenmenü öffnen Expertenmenü festlegen öffnen Expertenmenü 🖓 E2 🚱 Messung E1 Inaktiv > Тур Inaktiv 🔻 ⇒, E2 Inaktiv > ϵ_{P} \triangleright_{Σ} OK OK Messung Art der Messung, Einheit und Kompensation einstellen
- ► Gehen Sie zum Bildschirm "Messung".

► Wählen Sie den Parameter.

Beispiel: Angenommen, Sie haben einen pH-Sensor am POT-Eingang, einen Sensor für freies Chlor am IN1-Eingang und einen Temperatursensor am RTD-Eingang angeschlossen.

Die Liste der Typen hängt von den Sensoren ab, die Sie im Eingabemenü definiert haben.

► Wählen Sie die Art der Messung.

Sie können alle Messungen wählen, die direkt von einem im Eingänge-Menü definierten Sensor geliefert werden, oder auch Parameter, die aus den Messwerten mehrerer Sensoren errechnet werden.

Hier können Sie freies Chlor, pH und Temperatur von den Sensoren und Aktivchlor aus einer Berechnung auswählen.

► Wählen Sie die Maßeinheit.

▶ Wählen Sie die Sensoreingänge, die zur Berechnung des Parameters verwendet werden.

Wenn Sie einen Parameter auswählen, der temperaturabhängig sein kann, können Sie einen Temperatursensor verwenden. Verwenden Sie ihn nicht, beträgt der Kompensationswert 25°C.

4) Konfiguration des Durchflusses

In diesem Menü können Sie die Durchflusserkennung und die Durchflussmessung auf der Grundlage von Eingangssensoren und Schaltern definieren.

► Gehen Sie zum Bildschirm "**Durchfluss**".

▶ Wählen Sie den Parameter, für den Sie die Durchflusserkennung konfigurieren möchten.

► Wählen Sie den Eingang des Durchflussmessers.

Sie können nur dann einen Durchflussmesser auswählen, wenn Sie auf dem Eingänge-Bildschirm einen definiert haben. ▶ Wählen Sie die Einheit des Durchflussmessers.

Diese Einheit wird für die Konfiguration der Funktionen wie den Durchfluss-Grenzwerten verwendet.

► Sie können zur Durchflusserkennung 4 Schalter gleichzeitig verwenden. Klicken Sie auf

eine der Schaltflächen , um einen Schalter hinzuzufügen und bestätigen Sie mit OK. Drücken Sie , bis der Name Ihres Schalters auf der Schaltfläche erscheint.

Um einen Schalter oder einen als Schalter konfigurierten Analogeingang auszuwählen, muss der entsprechende Eingang auf dem Eingänge-Bildschirm als Schalter definiert worden sein.

Achten Sie auf die korrekte Konfiguration der Schaltrichtung.

Wenn die Schaltrichtung "NO" und der Schaltzustand "geöffnet" ist, ist der entsprechende Schalter inaktiv und das Symbol "kein Durchfluss" 🚽 auf dem Hauptbildschirm blinkt. Die Parameterregelung wird gestoppt.

▶ Wählen Sie, unter welcher Bedingung "kein Durchfluss" erkannt werden soll.

	E1 Aktivchlor Durchflussm. K1		alle inaktiv	Um einen müssen alle Durchflussm	Durchflussstopp ausgewählten Sch esser inaktiv sein.	anzuzeigen, alter und der
+ ок	Einheit I/mi	n ▼	mindestens 1	Wenn minde der Durchflu Durchflussma	estens einer der S Issmesser inaktiv angel erkannt.	Schalter oder ist, wird ein
	K2 alle inal mindest Kein Fluss alle inal wenn	ktiv tens 1 ktiv				

5) Konfiguration des Tanks

In diesem Menü können Sie auswählen, welche Niveauschalter und Volumensensor zur Erkennung leerer Tanks verwendet werden sollen.

Die Regelung ↑ bezieht sich auf die Chemikalie zur Erhöhung des gemessenen Werts und die Regelung ↓ auf die Senkung des gemessenen Werts, beispielsweise pH+ für die Regelung ↑ und pH- für die Regelung ↓.

6) Externe Freigabe

Mit diesem Menü können Sie die Regelung eines Parameters fernsteuern, anhalten oder den Sollwert über einen Timer oder einen externen Eingang verändern.

► Gehen Sie zum Bildschirm "externe Freigabe".

OK

Eine externe Freigabe kann nur einem Parameter zugewiesen werden, dessen Regelung auf

► Wählen Sie den Modus.

dem Regelungsbildschirm aktiviert ist.

	$\sum_{\Sigma} E1$	Aktivchlo	r
	Modus	Inaktiv	
		Inaktiv	
ОК		Timer	
		Eingang	
		Schalter	

Inaktiv	Für diesen Parameter ist keine externe Freigabe eingerichtet.		
Timer	Ein Timer kann während seiner Aktivzeit die		
	Regelung stoppen oder den Sollwert verandern.		
Eingang	Der Sollwert einer Regelung kann dem Wert		
	eines Eingangssensors folgen		
Schalter	Ein Schaltkontakt wird verwendet, um den		
	Sollwert zu ändern oder die Regelung zu stoppen		

Verwendung des "Timer"-Modus:

▶ Wählen Sie den Modus "Timer".

▶ Wählen Sie aus, wann die externe Freigabe erfolgen soll.

Nie	Es findet keine externe Freigabe statt
Immer	Sie können nur einen Starttermin festlegen
Von/bis	Sie können jeweils ein Datum für Start und Ende festlegen

- ▶ Wählen Sie den Zeitraum mit "Start" und "Ende".
- ▶ Wählen Sie jeweils das Start- und Enddatum mit "Von" und "Bis".
- ► Legen Sie die Wochentage fest, für welche Ihr Zeitfenster gelten soll.

► Stellen Sie die wöchentliche Wiederholung ein, d.h. Ihr Zeitfenster wird alle X Wochen wiederholt.

Start und **Ende** legen fest, in welchem Zeitfenster der Timer aktiv ist. **Von** und **bis** regeln, von welchem Tag an und bis zu welchem Tag diese Aktivzeit gilt.

Die Schaltflächen "**MDMDSS**" stehen für die einzelnen Wochentage. Hier können Sie wählen, an welchen Wochentagen die Aktivzeit gilt.

Zusätzlich können Sie das Wiederholungsintervall für die so programmierte Woche festlegen.

Konfigurationsbeispiel:

Bei den Einstellungen im oben dargestellten Bildschirm gilt: Das Zeitfenster **startet** um 8.00 Uhr und **endet** um 21.30 Uhr im Zeitraum **vom** 16. Juni 2016 **bis** zum 19. Juni 2016, und die aktiven Wochentage sind Montag und Donnerstag.

Das Intervall wurde auf 2 Wochen eingestellt, somit sind die folgende Wochen freigeschaltet: 13. – 19.6.

27.6. – 3.7. 11.7.– 17.7.

	Juni					
Μ	D	Μ	D	F	S	S
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30			
	Juli					
Μ	D	Μ	D	F	S	S
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

Die Termine sind also der 16., 27. und 30. Juni sowie der 11. und 14. Juli, jeweils von 10.30 bis 18.00 Uhr.

► Wählen Sie die Fernbedienungsregelung.

► Stellen Sie die Variationsgeschwindigkeit zwischen Regelsollwert und Fernsollwert ein.

Kv ist die Variationsgeschwindigkeit zwischen dem Regelsollwert und dem Fernsollwert.

Beispiel: Regelsollwert = 1ppm Fernsollwert = 2ppm Kv = 10%

Zu Beginn des Zeitfensters beträgt der Sollwert 1ppm, er steigt um (2ppm-1ppm) X 10% = 0,1ppm pro Sekunde. Daher wird der Fernsollwert 10s nach Beginn des Zeitfensters erreicht.

i

Wenn Kv auf 0 % oder 100 % gesetzt wird, wird der Fernsollwert sofort erreicht.

Wenn eine externe Freigabe aktiv ist, wird das Symbol F auf dem Hauptbildschirm angezeigt. **Verwendung des Modus "Eingang":**

In diesem Modus können Sie einen Parameter über einen Eingang fernsteuern. Dazu müssen Sie für den Remote-Eingang den gleichen Typ wählen wie für den Parameter.

Wenn Sie den Sollwert für Aktivchlor E1 über den Eingang IN2 fernsteuern möchten, müssen Sie für IN2 ebenso Aktivchlor mit der entsprechenden Skala einstellen.

▶ Wählen Sie den Modus "Eingang".

Verwendung des Modus "Schalter":

In diesem Modus können Sie einen Parameter über einen Schalter fernsteuern. Sie können die Regelung anhalten oder den Sollwert ändern.

► Wählen Sie den Schalter.

► Wählen Sie die Fernbedienungsregelung.

Stopp	Wenn der Schalter aktiv ist, wird der Regler gestoppt				
Sollwert	Wenn der Schalter aktiv ist, wird der				
	Regelsollwert durch den Fernsollwert ersetzt				

7) <u>Relais</u>

In diesem Menü können Sie festlegen, welche Aktion von Ihren Relais ausgeführt wird.

► Gehen Sie zum Bildschirm "**Relais**".

▶ Wählen Sie das Relais aus, das Sie konfigurieren möchten.

	Relais
	P1 inaktiv
+	P2 inaktiv
Ε	P3 inaktiv
	P4 inaktiv
	R1 inaktiv
	R2 inaktiv

		- /- P 5.067 Z
>		Modus
>	ок	
>		
>		
>		
>		

Wählen Sie den Modus.

Inaktiv	Das Relais wird nicht angesteuert; es bleibt in		
	der Ruhelage.		
Regeln	Das Relais wird zur Ansteuerung einer		
	Dosierpumpe oder eines Ventils verwendet.		
Alarm	Ein Alarmereignis wie eine Grenzwert-		
	überschreitung kann das Relais ansteuern.		
Status	Kopie des Zustands eines anderen Relais oder		
	eines Schalters.		
Timer	Das Relais ist während oder außerhalb eines		
	Zeitfensters aktiv.		

Verwendung des Modus "Regelung":

In diesem Modus können Sie ein Stellglied ansteuern, um eine Regelung durchzuführen.

► Wählen Sie den Modus "**Regelung**".

► Wählen Sie, welcher Parameter diesem Relais zugewiesen ist.

► Wählen Sie die Regelungsrichtung des an dieses Relais angeschlossenen Stellglieds.

	P1 Eng Zuweis Ansteuerung	Auf	Durch die Relaisansteuerung wird der zugewiesene Parameter erhöht.
	Modus <u>Inaktiv</u> <u>E1</u> <u></u> Richtung Auf <u></u>	Ab	Durch die Relaisansteuerung wird der zugewiesene Parameter verringert.
ок	Auf Ab		

Wenn Sie z. B. eine Chlordosierpumpe ansteuern wollen, um den Wert Ihres Prozesses zu erhöhen, müssen Sie die Richtung "**Auf**" wählen.

► Ruhestellung des Relais wählen.

+ - ОК	P1	NO	Normally Open (Schließer)
	End Zuweis Ansteuerung	NC	Normally Closed (Öffner)
	Funktion NO V		
	Ansteue NO		
	Regelt NC		
	Min 0		
	Dauer 10 🕈 s		
	Tmin 0 🔶 s		

► Wählen Sie die Art der Ansteuerung.

	P1	is Ansteu	erung
	Funktion	NO	<
A	Ansteuer	PWM	▼
ОК	Regelt	EIN/AUS	
6-	Min 0	PWM	DO ♦ %
	Dauer	PFM	s
	Tmin	0	s

EIN/AUS	Wird eine Ansteuerung benötigt, ist das		
	Relais aktiv, ansonsten ist es inaktiv.		
PWM	Pulsweitenmodulation: Das Relais gibt		
	Impulse aus, bei denen die Dauer des		
	aktiven Zustands proportional zur		
	Ansteuerungsgröße ist.		
PFM	Pulsfrequenzmodulation: Das Relais gibt		
	Impulse aus, deren Frequenz proportional		
	zur Ansteuerungsgröße ist.		

- ► Einstellen der Zyklusdauer "**Dauer**" (nur PWM).
- ► Stellen Sie die Mindest-Impulsübergangszeit "**Tmin**" ein (nur PWM).

Die erste Ansteuerung dauert weniger als "Tmin", weshalb das Relais nicht aktiv wird. Die Dauer der zweiten Ansteuerung ist die Summe der aktuell benötigten Ansteuerung und der vorhergehenden, nicht umgesetzten Ansteuerung (1,5s+1,5s) = 3s.

► Stellen Sie die maximale Hubfrequenz "**Freq**" ein (nur PFM).

	P1 Ener Zuweis Ansteuerung	Freq	Hubfrequenz: 1500Hub/min
	Funktion NO 🔻	L	
	Ansteuer. PFM 🗸		
- 0	Regelbereich		
	Min 0		
	Freq <u>1</u> 80 ♦ Hub/min		

► Stellen Sie den Regelbereich mit "**Min**" und "**Max**" ein.

	ок	P1 Ener Zuw Funktior	reis <mark>Ansteuerung</mark> n NO ▼	Min	Wert gering entspi 010	der Jstmög richt (S 0%	Antrieb glichen Stopp de	sgröße, Aktion r Dosieru	welcher des ng):	der Relais
+		Regelt Min 0	Ansteuer. PWM ▼ Regelbereich Min 0 ♦ Max 100 ♦ %	Max	Wert größtr (Stopp 010	der nöglic o der [0%	Antrieb hen Aktio Dosierung	sgröße, on des R g):	welcher elais ents	der pricht
		Dauer Tmin	10							

Mit dieser Funktion können Sie verschiedene Stellglieder in Abhängigkeit vom Regelbedarf ansteuern.

Konfigurationsbeispiel:

	P1	P2	P3	R1	R2
Richtung	Auf	Auf	Ab	Ab	Ab
Regelbereich	20100%	020%	010%	1070%	70100%
Maximale	15l/h	1l/h	1l/h	2l/h	5l/h
Pumpenleistung					

Relais-Aktion/Pumpleistung vs. Antriebsvariable

Antriebsvariable	P1	P2	P3	R1	R2
100%	100%	100%	0	0	0
	15l/h	1l/h	0	0	0
30%	12.5%	100%	0	0	0
	1,88l/h	1l/h	0	0	0
10%	0%	50%	0	0	0
	0l/h	0,5l/h	0	0	0
5%	0%	25%	0	0	0
	0l/h	0.25l/h	0	0	0
0%	0	0	0	0	0
	0	0	0	0	0
-5%	0	0	50%	0%	0%
	0	0	0,5l/h	0l/h	0l/h
-10%	0	0	100%	0%	0%
	0	0	1l/h	0l/h	0l/h
-30%	0	0	100%	16.7%	0%
	0	0	1l/h	0,33l/h	0l/h
-80%	0	0	100%	100%	33%
	0	0	1l/h	2l/h	1,67l/h
-100%	0	0	100%	100%	100%
	0	0	1l/h	2l/h	5l/h

Verwendung des Modus "Alarm":

Dieser Modus ermöglicht die Ansteuerung eines Relais im Falle eines Alarms.

▶ Wählen Sie den Modus "Alarm".

► Wählen Sie, welcher Parameter geprüft wird.

E

Wenn Sie **"Alle**" wählen, lösen sowohl E1- als auch E2-Alarmereignisse einen Alarm aus, der das Relais ansteuern kann.

▶ Wählen Sie, welche Alarme das Relais ansteuern können.

	Oberer Grenzwert überschritten					
_! <u>\$</u>	Unterer Grenzwert unterschritten					
Ð	Sensor fehlerhaft, außerhalb des Messbereichs oder					
	nicht angeschlossen					
	Dosierzeit überschritten oder Tank leer					
[C]_	Regelung durch einen Timer unterbrochen					
	Externe Freigabe aktiv					
_Ę	Wasserdurchfluss unterbrochen					
X	Wartezeit wegen Sensoranlauf					

► Wählen Sie die Ruhestellung.

	/ P2	Anctou		NO	Normally Open (Schließer)
	Funktion NO V				Normally Closed (Öffner)
	Ton	NO	 >		
ОК	Toff	NC			
	Verzög.	10	s		

► Stellen Sie die Impulsübergangszeit mit "Ton" und "Toff" ein

	0.240-
	0240S
Toff	Inaktivzeit:
	0240s

Hier können Sie die Aktivzeit "Ton" und die Inaktivzeit "Toff" für die Steuerung des Relais bei anstehendem Alarm definieren.

► Stellen Sie die "**Verzögerung**" beim Schalten des Relais vor und nach dem Alarm ein.

Relaisaktion entsprechend den obigen Einstellungen, Ton = 2s, Toff = 3s, Verz. = 10s

Verwendung des Modus "Zustand":

In diesem Modus können Sie den Zustand eines anderen Relais oder Schalters kopieren.

▶ Wählen Sie den Modus "**Status**".

► Wählen Sie aus, welches Relais oder welcher Schalter kopiert werden soll.

Diese Liste enthält alle Relais und Schalter, die nicht deaktiviert sind.

Verwendung des "Timer"-Modus:

In diesem Modus können Sie ein Relais per Timer entsprechend einem Zeitfenster ansteuern.

▶ Wählen Sie den Modus "Timer".

▶ Wählen Sie aus, wann das Relais aktiv sein soll.

Nie	Der Timer ist deaktiviert
Immer	Sie können nur einen Starttermin festlegen
Von/bis	Sie können jeweils ein Datum für Start und Ende festlegen

Während	Das	Relais is	st wä	ährend des	Zeitf	ensters aktiv
Außerhalb	Das	Relais	ist	während	des	Zeitfensters
	inak	tiv				

- ▶ Wählen Sie den Zeitraum mit "Start" und "Ende".
- ▶ Wählen Sie jeweils das Start- und Enddatum mit "Von" und "Bis".
- ► Legen Sie die Wochentage fest, für welche Ihr Zeitfenster gelten soll.

► Stellen Sie die wöchentliche Wiederholung ein, d.h. Ihr Zeitfenster wird alle X Wochen wiederholt.

Start und **Ende** legen fest, in welchem Zeitfenster der Timer aktiv ist. **Von** und **bis** regeln, von welchem Tag an und bis zu welchem Tag diese Aktivzeit gilt.

Die Schaltflächen "**MDMDSS**" stehen für die einzelnen Wochentage. Hier können Sie wählen, an welchen Wochentagen die Aktivzeit gilt.

Zusätzlich können Sie das Wiederholungsintervall für die so programmierte Woche festlegen.

8) Analogausgänge

► Gehen Sie zum Bildschirm "Analogausgang".

▶ Wählen Sie den Ausgang aus, den Sie konfigurieren möchten.

► Wählen Sie den Modus.

Inaktiv	Der Ausgang ist deaktiviert						
Regeln	Der Ausgang wird zur Ansteuerung einer Dosierpumpe oder eines Ventils verwendet.						
Messung	Eine Parametermessung wird an den Ausgang übertragen.						
Sensor	Eine Sensormessung wird an den Ausgang übertragen.						

► Wählen Sie die Ausgangsbelegung.

- ► Wählen Sie den Strombereich.
- ► Wählen Sie die Ströme für bestimmte Zustände.

-

		Bereich	Ausgangsstrombereich:
	Modus Regeln 🔻 E1 🔻		020mA
	Bereich 420mA 🗸		420mA
	Echlor	Fehler	Stromstärke bei fehlerhafter Messung oder
OK			Konfigurierung (Sensor nicht angeschlossen,
) —	Hemmung kein/e 🔻		Kurzschluss, falsche Einstellungen):
	Außer Bereich		0mA
	Auber bereich 23mA		0/4mA (0 oder 4 je nach Messbereich)
	Richtung Auf 🔻		2,6mA
		Hemmung	Strom während einer vorübergehenden
			Pause (Pause des Wasserflusses,
			Menübearbeitung):
			kein/e
			0mA
			0/4mA (0 oder 4 je nach Messbereich)
			3,4mA
		Außer	Strom, wenn die Messung außerhalb des
		Bereich	Bereichs liegt:
			23mA
			20 mA
			20,8mA

► Wählen Sie die Dosierrichtung (nur Regelung).

⊖р о∪т1		Auf
Modus Rege	In ▼ E1 ▼	Ab
Bereich	420mA ▼	
Fehler	0mA ▼	
Hemmung	Auf	
Außer Bereich	Ab 🔽	
Richtung	Auf 🔻	

	Auf	Die	Aktion	des	Stellglieds	kann	den
	gemessenen Wert erhöhen.						
E1 🔻	Ab	Die	Aktion	des	Stellglieds	kann	den
20mA 🔻		gemessenen Wert senken.					
mA ▼							
···/							

9) <u>Display</u>

► Gehen Sie zum Bildschirm "**Display**".

▶ Wählen Sie, welche Informationen in der Statusleiste angezeigt werden sollen.

Leer	Der Informationsbereich der Statusleiste ist
	leer.
Eingang	Eingangswert:
	(mV, Ohm, mA, Hz)
Sensor	Sensorwert:
	POT, RTD, IN1, IN2
Messung	Messwert eines Parameters:
_	E1, E2
Schalter	Zustand eines Schalters
Relais	Zustand eines Relais

► Wählen Sie die Information.

► Wählen Sie den Anzeigemodus.

+ ок	Display Display Display Modus 2V Reihenfolg 2V E1 E2 2H Relais-Status Schalter-Status	Modus	Anzeigemodus Hauptbildschirm: 2V (2 Parameter vertikal) 2H (2 Parameter horizontal)

► Legen Sie die Reihenfolge der Parameter fest. **••••** bedeutet, dass dieser Parameter auf dem Hauptbildschirm nicht angezeigt wird.

auf dem Hauptbildschirm, um die aktuelle Reihenfolge der

- ▶ Wählen Sie, ob Sie den Zustand der verwendeten Relais sehen möchten.
- ▶ Wählen Sie, ob Sie den Zustand der verwendeten Schalter sehen möchten.

▶ Wählen Sie, ob Sie im Benutzermenü das Wartungssymbol ausblenden möchten.

÷

► Stellen Sie das Zeitlimit für die Passworteingabe ein.

	Display Betusleiste Hauptbildsc Ben	Passworteingabe- Zeitlimit	Zulässige Inaktivitätsdauer bis zur erneuten Passwortabfrage bei einem
	Wartungssymbol aus		Menü mit Zugangsbeschränkung: 03600s
ок	Passw <u>3</u> 0 ♦ Zeitlimit		

10) Kommunikation

► Gehen Sie zum Bildschirm "COM".

- ► Wählen Sie das Modbus-Protokoll.
- ► Wählen Sie die Modbus-Adresse (Geräte-Slave-ID).
- ► Wählen Sie die Baudrate der seriellen Übertragung.
- ► Wählen Sie die Parität der seriellen Übertragung.

Protokoll	Modbus-spezifisches Protokoll entsprechend
	Ihrem lokalen Netzwerkprotokoll:
	RTU, ASCII
Adresse	Slave-ID
	1247
Baudrate	Baudrate:
	300
	1200
	2400
	4800
	9600
	19200
	38400
	57600
	115200
Parität	Serielle Parität
	Keine, ungerade, gerade

11) Einstellungen

► Gehen Sie zum Bildschirm "Einstellungen".

Auf diesem Bildschirm können Sie ein Rücksetzen auf Werkseinstellungen durchführen.

► Drücken Sie die Taste OK

, um das Rücksetzen zu bestätigen.

ок	Einstellungen
	Werkseinstellungen

г.,	

Nach dem Zurücksetzen wird das Gerät automatisch neu gestartet. Alle Einstellungen und Kalibrierungen werden gelöscht, Sie müssen das Gerät neu konfigurieren und Ihre Sensoren neu kalibrieren.

IX. USB

Ihr Gerät verfügt über einen USB-Anschluss zum Einstecken eines USB-Sticks. Auf diese Weise können Sie:

- > die Messdaten und die Dosiereinstellungen speichern,
- > eine Konfigurationsdatei speichern und laden,
- > die Firmware des Geräts aktualisieren.

1) Datenaufzeichnung

Die Datenaufzeichnung ermöglicht es Ihnen, den Betrieb Ihres Geräts zu überwachen. Die Aufzeichnung erfolgt in konstanten Intervallen, die Sie unter Technikermenü > Speichern einstellen können.

Ohne USB-Speichermedium können die letzten 15 Minuten aufgezeichnet werden. Sobald der Stick mit dem Gerät verbunden ist, werden die Daten automatisch gemäß dem gewählten Zeitintervall aufgezeichnet.

Die Daten werden in einer CSV-Datei gespeichert. Sie können diese mit einem Texteditor oder in Ihrer Tabellenkalkulationssoftware öffnen. Der Dateiname ist das Datum der Aufzeichnung.

Spalte	Beschreibung
Time	Aufzeichnungszeit
POT.value	Messwert
POT.fault	Eingangsfehler (nicht angeschlossen oder außerhalb des Bereichs)
POT.delayed	Sensor verzögert
RTD.value	Messwert
RTD.fault	Eingangsfehler (nicht angeschlossen oder außerhalb des Bereichs)
RTD.delayed	Sensor verzögert
IIN1.value	Messwert
IIN1.fault	Eingangsfehler (nicht angeschlossen oder außerhalb des Bereichs)
IIN1.delayed	Sensor verzögert
IIN2.value	Messwert
IIN2.fault	Eingangsfehler (nicht angeschlossen oder außerhalb des Bereichs)
IIN2.delayed	Sensor verzögert
K1.value	Messwert
K1.fault	Eingangsfehler (nicht angeschlossen oder außerhalb des Bereichs)
K1.delayed	Sensor verzögert
K2.value	Messwert
K2.fault	Eingangsfehler (nicht angeschlossen oder außerhalb des Bereichs)
K2.delayed	Sensor verzögert
K1.closed	Zustand des Schalters (offen oder geschlossen)
K1.active	Schaltrichtung (abhängig von der Funktion als Öffner/Schließer)
K2.closed	Zustand des Schalters (offen oder geschlossen)
K2.active	Schaltrichtung (abhängig von der Funktion als Öffner/Schließer)
E1.enabled	Regelung und Alarm aktiviert
E1.delayed	Wartezeit wegen Sensoranlauf
E1.flow	Messwasser fließt
E1.threshold_high	Oberer Grenzwert überschritten
E1.threshold_low	Unterer Grenzwert unterschritten
E1.overdose	Dosierzeit überschritten oder Tank leer
E1.timer	Regelung durch einen Timer unterbrochen
E1.remote	Externe Freigabe aktiv
E1.value	Messwert
E1.y	Stellwert
E1.u	Dosierwert
E2.enabled	Regelung und Alarm aktiviert

Inhalt des Dokuments:

E2.delayed	Wartezeit wegen Sensoranlauf
E2.flow	Messwasser fließt
E2.threshold_high	Oberer Grenzwert überschritten
E2.threshold_low	Unterer Grenzwert unterschritten
E2.overdose	Dosierzeit überschritten oder Tank leer
E2.timer	Regelung durch einen Timer unterbrochen
E2.remote	Externe Freigabe aktiv
E2.value	Messwert
E2.y	Stellwert
E2.u	Dosierwert
D1.enabled	Gerätezustand (Regelung und Alarm)
D1.halted	Gerät wurde aufgrund einer Konfiguration gestoppt
D1.timer	Timer aktiv

2) Speichern und Laden einer Konfigurationsdatei

Mit dieser Funktion können Sie die Konfiguration eines Geräts speichern und auf andere Geräte laden.

Speichern der aktuellen Konfiguration:

- 1. Schließen Sie den USB-Stick an Ihr Gerät an.
- 2. Starten Sie Ihr Gerät neu.
- 3. Drücken Sie innerhalb von 3 Sekunden die OK-Taste.
- 4. Warten Sie einige Sekunden.
- 5. Das Gerät beginnt mit der Übertragung.

Am Ende dieses Vorgangs befinden sich 3 Dateien auf Ihrem Stick: **EEExxxY.bak>** Konfigurationsdatei **EXTxxxY.bak>** Datendatei **FWxxxxY.bak>** Firmware-Datei

xxxY ist die Softwareversion.

Laden der Konfiguration auf ein anderes Gerät:

- 1. Benennen Sie die Datei <EEExxxY.**bak**> um in <EEExxxY.**bin**>.
- 2. Schließen Sie den Stick an Ihr Gerät an.
- 3. Wenn das Gerät Sie fragt, ob Sie die Konfiguration laden möchten, drücken Sie die OK-Taste.
- 4. Das Gerät führt einen automatischen Neustart mit der neuen Konfiguration aus.

3) <u>Firmware-Update</u>

Mit dieser Funktion können Sie Ihr Gerät auf die neueste verfügbare Version aktualisieren.

Aktualisieren Ihres Geräts:

- 1. Speichern Sie die Firmware-Datei <FWxxxY.bin> auf Ihrem USB-Stick.
- 2. Wenn das Gerät Sie fragt, ob Sie aktualisieren möchten, drücken Sie die OK-Taste.
- 3. Das Gerät startet automatisch neu und führt die Aktualisierung durch.

NOTIZEN

DOSATRONIC GmbH | Zuppingerstraße 8 | 88213 Ravensburg ^(m): +49-(0)7 51 - 2 95 12 - 0 | ^(m): +49-(0)7 51 - 2 95 12 - 190 info@dosatronic.de | www.dosatronic.de

DOSAControl **DCW 220**

Mess- und Regelgerät zur Wasserbehandlung (Teil 3)

Kommunikationsanleitung

<image/>

Bitte lesen Sie die Bedienungsanleitung, bevor Sie das Gerät montieren und in Betrieb nehmen. Dadurch schützen Sie sich und vermeiden Schäden an der Anlage.

Betriebsanleitung für geschultes Fachpersonal

Umfang der Dokumentation

Teil 1: Montage- und Inbetriebnahmeanleitung

- Teil 2: Programmierungsanleitung
- ► Teil 3: Kommunikationsanleitung

Allgemeine Informationen:

Handbuch vom 07/05/2016 Rev. 1

Professionelles Mess- und Regelgerät zur Wasserbehandlung. **DOSA***Control* **DCW 220**

Teil 3: Montage- und Inbetriebnahmeanleitung (Art.-Nr. DOC0338)

Inhalt

I.	Verwendung dieses Dokuments	4
1)	Beschriftung und Anbringung des Typenschilds	5
II.	Kommunikationsübersicht	6
1)	Lokale Verbindung mit dem Computer	6
III.	Verdrahtung	7
1)	Verdrahtung der internen RS485-Schnittstelle mit dem PC-Konverter RS485/USB	7
IV.	Programmierung des Reglers	8
1)	Verbindung RS485 mit DCW 220	8
I.	ModBus-Register	
1)	Adresse des ModBus-Registers	
2)	Datenformatierung	14

I. Verwendung dieses Dokuments

Bitte lesen Sie diese gesamte Anleitung durch, bevor Sie mit der Montage, der Einstellung oder der Inbetriebnahme Ihres Reglers beginnen, um die Sicherheit von Schwimmern, Benutzern und technischen Geräten zu gewährleisten.

Die in diesem Dokument enthaltenen Informationen müssen unbedingt beachtet werden. Die DOSATRONIC GmbH lehnt jede Verantwortung ab, wenn die Anweisungen in diesen Unterlagen nicht befolgt werden.

Es werden folgende Symbole und Piktogramme verwendet, um das Lesen und Verstehen dieser Anleitung zu erleichtern.

- Information
- Maßnahme erforderlich ►
- ≻ Aufzählungspunkt

Verletzungs- oder Unfallgefahr.

Gefahr eines elektrischen Schlags.

Gefahr von unsachgemäßer Bedienung oder Beschädigung des Geräts.

Anmerkung oder Hinweis

Wiederverwertbares Bauteil

1) Beschriftung und Anbringung des Typenschilds

II. Kommunikationsübersicht

Die **DCW 220-Regler** sind so konzipiert, dass sie zu einem High-Tech-Überwachungssystem verbunden werden können, das lokal oder mit Fernzugriff arbeitet. Es können mehrere Regler in verschiedenen Varianten miteinander verbunden werden.

1) Lokale Verbindung mit dem Computer

Verbindung mit einem oder mehreren Reglern über RS485-Bus.

Zur Verbindung Ihres DCW 220-Reglers mit einem Computer können Sie einen USB/RS485-Konverter verwenden.

Artikelnummer	Bezeichnung
INF1021	USB-485-Konverter

III. Verdrahtung

1) Verdrahtung der internen RS485-Schnittstelle mit dem PC-Konverter RS485/USB

Die Steuerungen können unter Beachtung der Reihenfolge der Kabel verkettet werden (Parallelschaltung).

Konfigurierung: alle Schalter sind "EIN"

IV. Programmierung des Reglers

1) Verbindung RS485 mit DCW 220

Für die Verbindung des Reglers mit dem Bus benötigen alle Bus-Teilnehmer dieselbe Parameterkonfiguration.

- ► Wählen Sie das Kommunikationsprotokoll.
- ► Wählen Sie die Geräteidentifikationsadresse.
- ► Wählen Sie die RS485-Übertragungsgeschwindigkeit.
- ▶ Wählen Sie die RS485-Parität.

Für eine reibungslose Kommunikation müssen alle an denselben RS485-Bus angeschlossenen Regler dieselbe Geschwindigkeit und Parität, aber jeweils eine eigene Adresse haben.

Bezeichnung	Bedeutung	Einstellung	Standardwert
Modus	Kommunikationsprotokoll	RTU/ASCII	RTU
Adresse	"slave ID", Geräteadresse	1247	10
Baudrate	Kommunikationsgeschwindigkeit	300 1200 2400 4800 9600 19200 38400 57600 115200	9600
Parität	Parität der seriellen Kommunikation	Kein/e Gerade Ungerade	Gerade

Auf dem Board befinden sich drei Schalter zur Verwaltung der Terminierungs- und der Polarisationswiderstände der RS485-Leitung. Bei Lieferung befinden sich die Schalter der Regler in AUS-Stellung.

I. ModBus-Register

1) Adresse des ModBus-Registers

Die Register sind nach dem ModBus-Standard indiziert. Es sind "HOLDING REGISTER" im Bereich von 40001 bis 49999.

Einige ModBus-Programme und SPS verwenden Adressen im Registerbereich von 0 bis 65535.

Daher entspricht das ModBus-Register 40001 der ModBus-Adresse 0, 40002 der Adresse 1 und so weiter.

ModBus- Register	Register- größe	Bezeichnung	Attribute	Format	Beschreibung				
	16 Bit			_					
Konfiguration									
40001	788	EEPROM	rw	STRUCT	Speicher				
			Schni	ttstellen					
41001	2	signal_POT	r	REAL	POT-Signal [mV]				
41003	2	signal_RTD	r	REAL	RTD-Widerstand [Ohm]				
41005	2	signal_IIN1	r	REAL	IN1-Strom [mA]				
41007	2	signal_IIN2	r	REAL	IN2-Strom [mA]				
41009	2	signal_K1	r	REAL	K1-Frequenz [Hz]				
41011	2	signal_K2	r	REAL	K2-Frequenz [Hz]				
41013	1	supply_IN	r	BOOL	0=12 V / 1=24 V				
41014	1	state_IN1	r	BOOL	0=OFFEN / 1=GESCHLOSSEN				
41015	1	state_IN2	r	BOOL	0=OFFEN / 1=GESCHLOSSEN				
41016	1	state_K1	r	BOOL	0=OFFEN / 1=GESCHLOSSEN				
41017	1	state_K2	r	BOOL	0=OFFEN / 1=GESCHLOSSEN				
41018	1	state_P1	r	BOOL	0=OFFEN / 1=GESCHLOSSEN				
41019	1	state_P2	r	BOOL	0=OFFEN / 1=GESCHLOSSEN				
41020	1	state_P3	r	BOOL	0=OFFEN / 1=GESCHLOSSEN				
41021	1	state_P4	r	BOOL	0=OFFEN / 1=GESCHLOSSEN				
41021	1	state_R1	r	BOOL	0=OFFEN / 1=GESCHLOSSEN				
41023	1	state_R2	r	BOOL	0=OFFEN / 1=GESCHLOSSEN				
41024	1	state_R3	r	BOOL	0=OFFEN / 1=GESCHLOSSEN				
41025	1	state_R4	r	BOOL	0=OFFEN / 1=GESCHLOSSEN				
41026	2	current_IOUT1	r	REAL	OUT1 current [mA]				
41028	2	current_IOUT2	r	REAL	OUT2 current [mA]				
41030	2	Timestamp Local	r	DWORD	Zeit seit 1. Januar 1970 0:00 Uhr [s]				
41032	2	Run time	r	DWORD	Zeit ab Gerätestart				

	Werte und Zustände					
				WORD	Bit 0: Gerät aktiviert	
					Bit 1: Timer aktiviert	
					Bit 2: Gerät läuft an	
41101	1	device_state	rw		Bit 3: Gerätestopp durch Timer	
				DWORD	Bit 0: Regelung und Alarme aktiviert	
					Bit 1: Anlaufverzögerung Sensoren	
					Bit 2: Temporäre Pause	
					Bit 3: Strömungsschalter oder Durchflussmesser (wahr	
					== Durchfluss)	
					Bit 4: Wartung erforderlich	
					Bit 5: Dosierung	
					Bit 6: Alarm anstehend	
					Bit 7: Regelung und Alarm timerbedingt pausiert	
					Bit 8: Sensoren außernalb des Bereichs oder nicht	
					Rit O: Sonsor außerhalb des Messhereichs	
					Bit 10: Sonsormossung instabil	
					Bit 11: Unterer Grenzwert unterschritten	
					Bit 12: Oherer Grenzwert überschritten	
					Bit 13: Max Dosierzeit erreicht oder Tank leer	
					Bit 14 [.] Timer aktiv	
					Bit 15: Fernsteuerung aktiv	
41201	2	param 1 state	rw		Bit 16: Konfigurationsfehler	
41203	2	param_1_measure_value	r	REAL	Messwert [measure_unit]	
41205	2	param_1_control_w	rw	REAL	Sollwert [measure_unit]	
41207	2	param_1_dosage_u	r	REAL	Stellwert [1/1]	
41209	2	param_1_alarm_high	rw	REAL	Alarm unterer Grenzwert [measure_unit]	
41211	2	param_1_alarm_low	rw	REAL	Alarm oberer Grenzwert [measure_unit]	
				DWORD	Bit 0: Regelung und Alarme aktiviert	
					Bit 1: Anlaufverzögerung Sensoren	
					Bit 2: Temporäre Pause	
					Bit 3: Strömungsschalter oder Durchflussmesser (wahr	
					== Durchfluss)	
					Bit 4: Wartung erforderlich	
					Bit 5: Dosierung	
					Bit 6: Alarm anstehend	
					Bit 7: Regelung und Alarm timerbedingt pausiert	
					Bit 8. Sensoren ausernalb des Bereichs oder nicht	
					Rit O: Sonsor außorhalb das Massharaichs	
					Bit 10: Sensor messung instabil	
					Bit 11: Unterer Grenzwert unterschritten	
					Bit 12: Oherer Grenzwert überschritten	
					Bit 13: Max. Dosierzeit erreicht oder Tank leer	
					Bit 14: Timer aktiv	
					Bit 15: Fernsteuerung aktiv	
41301	2	param_2_state	rw		Bit 16: Konfigurationsfehler	
41303	2	param_2_measure_value	r	REAL	Messwert [measure_unit]	
41305	2	param_2_control_w	rw	REAL	Sollwert [measure_unit]	
41307	2	param_2_dosage_u	r	REAL	Stellwert [1/1]	
41309	2	param_2_alarm_high	rw	REAL	Alarm unterer Grenzwert [measure_unit]	
41311	2	param_2_alarm_low	rw	REAL	Alarm oberer Grenzwert [measure_unit]	
41401	2	sensor_POT_value	r	REAL	Messwert POT-Sensor [sensor_unit]	
41403	2	sensor_RTD_value	r		Messwert RTD-Sensor [sensor_unit]	
41405	2	sensor_IN1_value	r		Messwert IN1-Sensor [sensor_unit]	
41407	2	sensor_IN2_value	1		Nesswert IN2-Sensor [sensor_unit]	
41409	2	sensor_K1_value	r		IVIESSWERT K1-SENSOR [SENSOR_UNIT]	
41411	2	sensor_k2_value	ļ ſ		iviesswert KZ-Sensor [sensor_unit]	

Gerät								
42001	22	device	r	STRUCT	Zustand und Wert des Geräts			
Parameter								
42101	124	param_1	r	STRUCT	Zustand und Wert von Parameter 1			
42301	124	param_2	r	STRUCT	Zustand und Wert von Parameter 2			
			Sen	isoren				
42501	34	sensor_POT	r	STRUCT	Zustand und Wert des POT-Sensors			
42551	34	sensor_RTD	r	STRUCT	Zustand und Wert des RTD-Sensors			
42601	34	sensor_IN1	r	STRUCT	Zustand und Wert des IN1-Sensors			
42651	34	sensor_IN2	r	STRUCT	Zustand und Wert des IN2-Sensors			
42701	34	sensor_K1	r	STRUCT	Zustand und Wert des K1-Sensors			
42751	34	sensor_K2	r	STRUCT	Zustand und Wert des K2-Sensors			
			Sc	nalter				
42801	10	switch_IIN1	r	STRUCT	Zustand des Schalters IN1			
42821	10	switch_IIN2	r	STRUCT	Zustand des Schalters IN2			
42841	10	switch_K1	r	STRUCT	Zustand des Schalters K1			
42861	10	switch_K2	r	STRUCT	Zustand des Schalters K2			
			0/4-20 m	A-Ausgäi	nge			
42901	16	iout_1	r	STRUCT	Zustand und Wert des Ausgangs OUT1			
42921	16	iout_2	r	STRUCT	Zustand und Wert des Ausgangs OUT2			
			R	elais				
43001	56	relay_P1	r	STRUCT	Zustand und Wert des Relais P1			
43101	56	relay_P2	r	STRUCT	Zustand und Wert des Relais P2			
43201	56	relay_P3	r	STRUCT	Zustand und Wert des Relais P3			
43301	56	relay_P4	r	STRUCT	Zustand und Wert des Relais P4			
43401	56	relay_R1	r	STRUCT	Zustand und Wert des Relais R1			
43501	56	relay_R2	r	STRUCT	Zustand und Wert des Relais R2			
43601	56	relay_R3	r	STRUCT	Zustand und Wert des Relais R3			
43701	56	relay_R4	r	STRUCT	Zustand und Wert des Relais R4			
			Erei	gnisse	,			
44001	36	device_1_event	r	STRUCT	Timerstatus Gerät			
44051	36	param_1_event	r	STRUCT	Timerstatus Parameter 1			
44101	36	param_2_event	r	STRUCT	Timerstatus Parameter 2			
44151	36	relay_event_P1	r	STRUCT	Timerstatus Relais P1			
44201	36	relay_event_P2	r	STRUCT	Timerstatus Relais P2			
44251	36	relay_event_P3	r	STRUCT	Timerstatus Relais P3			
44301	36	relay_event_P4	r	STRUCT	Timerstatus Relais P4			
44351	36	relay_event_R1	r	STRUCT	Timerstatus Relais R1			
44401	36	relay_event_R2	r	SIKUCI	Timerstatus Relais R2			
44451	36	relay_event_R3	r	SIKUUI	Timerstatus Relais R3			
44501	36	relay_event_R4	r	SIKUUI	I Imerstatus Relais R4			
			Di	splay				
45000	2048	screen	r	STRUCT	2bpp-Display Puffer 128x128 pix			

2) Datenformatierung

BOOL

"Bool" verwendet 1 Register und kann die Werte 0 und 1 annehmen.

Beispiel:

Register 41018 ist der Zustand des Relais P1. REG(41018) = 0: Relais offen REG(41018) = 1: Relais geschlossen

REAL

"real" verwendet 2 Register und kann einen 32-Bit-Fließkomma-Dezimalwert speichern.

Beispiel:

Register 41102 ist der Messwert von Parameter 1, die Einheit des Werts ist die im Messmenü ausgewählte Maßeinheit. Für den Messwert 1,94ppm lautet die hexadezimale Kodierung 0x3FF851EC. REG(41103) = 0x51EC REG(41104) = 0x3FF8

WORD

"Word" verwendet 1 Register und kann 16-Bit-Ganzzahlwerte oder Bitfeld-Flags speichern.

Beispiel (Bits): Das Register 41101 enthält die Statusflags des Geräts. REG(4101) = b00000000000101

REG(41101)(bit00) = 1: Gerät ist aktiv REG(41101)(bit01) = 0: Timer ist nicht aktiv REG(41101)(bit02) = 1: Anlaufverzögerung der Regelung und des Alarms von mindestens einem Parameter REG(41101)(bit03) = 0: keine Timer-Stopp-Bedingung REG(41101)(bit04) = 0: nicht belegt REG(41101)(bit05) = 0: nicht belegt REG(41101)(bit06) = 0: nicht belegt REG(41101)(bit07) = 0: nicht belegt REG(41101)(bit08) = 0: nicht belegt REG(41101)(bit09) = 0: nicht belegt REG(41101)(bit10) = 0: nicht belegt REG(41101)(bit11) = 0: nicht belegt REG(41101)(bit12) = 0: nicht belegt REG(41101)(bit13) = 0: nicht belegt REG(41101)(bit14) = 0: nicht belegt REG(41101)(bit15) = 0: nicht belegt

DWORD

"DWord" verwendet 2 Register und kann 32-Bit-Ganzzahlwerte oder Bitfeld-Flags speichern.

Beispiel: Register 41030 enthält die Ortszeit, diese Zeit entspricht der Anzahl der Sekunden seit dem 1. Januar 1970. Der 27. April 2015, 03:35:19 Uhr entspricht 1430141719 Sekunden seit dem Referenzdatum, der hexadezimale Wert ist 0x553E3B17. REG(41032) = 0x3B17 REG(41032) = 0x553E

STRUCT (device)

Dieser Datenblock enthält alle Zustände, Werte und Einstellungen des Geräts.

Bezeichnung	Größe [Bytes]	Offset [Bytes]	Тур	Beschreibung
dev	1	0	byte	Intern
name	12	1	string	Name des Geräts
align	3	13		Intern
fd	4	16	integer	Intern
flag	1	20	bits	Bit0: Regelung und Alarm aktiviert Bit1: Timer aktiviert Bit2: Gerät läuft an Bit3: Gerätestopp durch Timer
align	3	21		Intern
device.calendar.flag	1	24	bits	bit0: Timer läuft Bit1: Timerschaltung geplant Bit2: Timer pausiert
align	3	25		Intern
device.calendar.event_list	4	28		Intern
device.calendar.next	4	32		Intern
device.param.flag	3	36	bits	Bit 0: Regelung und Alarme aktiviert Bit 1: Anlaufverzögerung Sensoren Bit 2: Temporäre Pause Bit 3: Strömungsschalter oder Durchflussmesser (wahr == Durchfluss) Bit 4: Wartung erforderlich Bit 5: Dosierung Bit 6: Alarm anstehend Bit 7: Regelung und Alarm timerbedingt pausiert Bit 8: Sensoren außerhalb des Bereichs oder nicht angeschlossen Bit 9: Sensor außerhalb des Messbereichs Bit 10: Sensormessung instabil Bit 11: Unterer Grenzwert unterschritten Bit 12: Oberer Grenzwert überschritten Bit 13: Max. Dosierzeit erreicht oder Tank leer Bit 14: Timer aktiv Bit 15: Fernsteuerung aktiv Bit 16: Konfigurationsfehler
align	1	39		Intern
next	4	40		Intern

Beispiel:

Um den Zustand des Geräts zu lesen, wird das Basisregister REG(42001) verwendet.

Byte-Offset des Flags ist (1+12+3+4) = 20Register-Offset ist 20/2 = 10Die Adresse des Registers zum Lesen des Flags ist REG(42001+20) = REG42021)

REG(42021) = 0x0100Die Datenblöcke sind little-endian-codiert, daher ist die Bytereihenfolge invertiert. Flag = 0x01 Gerät ist in Betrieb.

STRUCT (param) Dieser Datenblock enthält alle Zustände, Werte und Einstellungen der Parameter.

Bezeichnung	Größe [Bytes]	Offset [Bytes]	Тур	Beschreibung
par	1	0	byte	Intern
align	3	1		Intern
fd	4	4	integer	Intern
flag	3	8	bits	Bit 0: Regelung und Alarme aktiviert Bit 1: Anlaufverzögerung Sensoren Bit 2: Temporäre Pause Bit 3: Strömungsschalter oder Durchflussmesser (wahr == Durchfluss) Bit 4: Wartung erforderlich Bit 5: Dosierung Bit 6: Alarm anstehend Bit 7: Regelung und Alarm timerbedingt pausiert Bit 8: Sensoren außerhalb des Bereichs oder nicht angeschlossen Bit 9: Sensor außerhalb des Messbereichs Bit 10: Sensormessung instabil Bit 11: Unterer Grenzwert unterschritten Bit 12: Oberer Grenzwert überschritten Bit 13: Max. Dosierzeit erreicht oder Tank leer Bit 14: Timer aktiv Bit 15: Fernsteuerung aktiv
alian	1	11		Bit 16: Konfigurationstehler
dilgii	1	12		Intern
	1	16		Intern
measure_kind	1	32	byte	Parametertyp: 0: Nicht zugewiesen 1: Freies Chlor 2: Aktivchlor 3: Gesamtchlor 4: Chloramine 5: Chlorit 6: Chloritdioxid 7: H2O2 8: BCDMH 9: DBDMH 10: Freies Brom 11: Aktivbrom 12: Gesamtbrom 13: APA 14: Ozon 15: Gelöster Sauerstoff 16: Nitrat 17: PHMB 18: Salzgehalt 19: TDS 20: Trübung 21: Leitfähigkeit 22: Temperatur 23: Durchfluss 24: pH 25: Redox 26: Chlorid 27: Ammoniak 28: Fluorid

				30: Volumen
measure_unit	1	33	byte	Maßeinheit
				0: Nicht zugewiesen
				1: Leer
				2: Dekade
				3: pH
				4: ppb
				5: ppm
				6: μg/l
				7: mg/l
				8: g/l
				9: %
				10: µS/cm ²
				11: mS/cm ²
				12: NTU
				13: FNU
				14: °K
				15: °C
				16: °F
				17: °R
				18: mA
				19: mV
				20: Hz
				21: Hub/min
				22: ms
				23: sec
				24: min
				25: h
				26: 1
				27: m3
				28: I/min
				29: l/h
				30: m3/h
				31: Imp/l
				32: Imp/m3
				33: Ohm
				34: mOhm
				35: Impuls
align	2	34		Intern
measure min value	4	36	float	Unterer Skalenendwert
measure max value	4	40	float	Oberer Skalenendwert
measure value	4	44	float	Messwert
measure m factor	4	48	float	Messkorrekturfaktor [1/1]
measure t factor	4	52	float	Temperaturkorrekturfaktor [%/°C]
alarm flag	1	56	hits	Rits für anstehende Alarme
alarm_hag	1	50	Dits	hito: Messwert über dem oberen Grenzwert
				Bit1: Messwert unter dem unteren
				Grenzwert
				Bit2: Dosierzeit überschritten oder Tank
				Bit3: Sonsor nicht angeschlesson oder
				außerhalb des Messbereichs
alarm threshold dolay	1	57	huto	Alarmyorzägarung hai
alarm_unresholu_delay	1	57	byte	
alarm threshold tist	1	FO	buta	
	1	50 50	Dyte	Intern
diiyii		59		
alarm_threshold_hyst	4	00	float	
	4	0 1	TIDAT	
aiarm_threshold_high	4	68	float	Uberer Alarmwert
flow_sensor	4	/2		Intern
tlow_switch	16	76		Intern
flow.op	1	92	byte	Flag Durchflusserkennung
				0: mindestens einer

				1 = alle
flow_unit	1	93	byte	Einheit Durchflussmesser:
				28: I/min
				29: l/h
				30: m3/h
align	2	94		Intern
flow_threshold	4	96	float	Grenzwert für die Durchflussrate zur
				Durchflusserkennung
flow_q_min	4	100	float	Unterer Durchflusswert für
				Regelungskompensation x0%
flow_q_max	4	104	float	Oberer Durchflusswert für
				Regelungskompensation x100%
flow_q	4	108	float	Aktueller Durchfluss
control_flag	1	112	bits	Bit0: $0 = 1DOF$
_				1 = 2DOF
				Bit[1~3]: Regelmodus
				0 = deaktiviert
				1 = Hysterese
				2 = Grenzwert
				3 = PID
				Bit4: Pausenfunktion aktiv
align	3	113		Intern
control_w	4	116	float	Reglersollwert
control x dead	4	120	float	Totband oder Hysterese abhängig vom
		-		Reglermodus
control xp	4	124	float	Reziprok proportionaler Wert der
•••••••••• <u>-</u> •••				Verstärkung
control ki	2	128	float	Integral-Koeffizient
control kd	2	130	float	Derivativ-Koeffizient
control_kb	4	132	float	Rückkopplungs-Koeffizient
control_threshold_low	4	136	float	Unterer Reglergrenzwert
control threshold high	4	140	float	Oberer Beglergrenzwert
	4	1//	float	Vorzägerter Poglerausgang
control_z_y	4	1/10	float	Pogolkrois- odor Eingangsfohlor abhängig
control_z_ex	4	140	noac	von den Freiheitsgraden
control z dox	1	152	float	Fobler des D-Anteils (derivativ)
control_z_dex	4	152	float	Febler des L'Anteils (derivativ)
	1	160	hite	hit[0:1]: Recolupactichtung
uosage_nag	1	100	DILS	$0 = 2 \sqrt{10^2 \text{ fm}^2}$
				0 - autwarts
				1 - abwalls 2 - boides
				Z – Delues Bit2: Pogolung proportional zum Durchfluss
				Bit2: Designing gestepht
alian	1	161		Intern
digit docado tick		162		Desierzeitübersebreitung
dosage.control_time	2	164	short	Max Decierzeit
	2	104	Short	Mdx. Doslerzeit
align	2	100		Intern
dosage.control_threshold	4	168	float	Regelungsgrenzwert für Überdosierung
dosage_u_bias	4	1/2	float	Grundlast
dosage_u	4	1/6	float	Dosierausgang
tank.switch_direct	4	180		Intern
tank.switch_invert	4	184		Intern
tank.sensor_direct	4	188		Intern
tank.sensor_invert	4	192		Intern
tank. threshold_direct	4	196	float	Grenzwert Tankleermeldung
tank. threshold_invert	4	200	float	Grenzwert Tankleermeldung
remolte.calendar.flag	1	204	bits	bit0: Timer läuft
				Bit1: Timerschaltung geplant
				Bit2: Timer pausiert
align	3	205		Intern
remote.calendar.event list	4	208		Intern
remote.calendar.next	4	212		Intern
	•		•	

remotre.flag	1	216	bits	bit[0~1]: Fernsteuermodus
				0 = deaktiviert
				1 = Timer
				2 = Sensor
				3 = Schalter
align	3	217		Intern
remote.sensor	4	220		Intern
remote.control.w	4	224	float	Aktueller Fernsteuerungs-Sollwert
remote.control.w_target	4	228	float	Gewünschter Fernsteuerungs-Sollwert
remote.control.kv	1	232	byte	Sollwert-Variationsgeschwindigkeit
align	3	233		Intern
next	4	236		Intern

Beispiel:

Um den Durchfluss von Parameter 1 zu lesen, wird das Basisregister REG(42101) verwendet.

Der Offset von "flow_q" beträgt 108 Bytes Der Register-Offset beträgt 108/2 = 54 Die Daten werden auf 4 Bytes gespeichert, so dass die Adressen der Register zum Lesen von "flow_q" REG(42101+54) = REG(42055) und REG(42056) sind.

REG(42155) = 0xA470 REG(42156) = 0x4541 Die Datenblöcke sind little-endian-codiert, daher beträgt der Wert 0x414570A4, d. h. 12,34 als Fließkommazahl 32Bits

STRUCT (sensor) Dieser Datenblock enthält alle Zustände, Werte und Einstellungen der Sensoren.

Bezeichnung	Größe [Bytes]	Offset	Тур	Beschreibung
con	1		buto	Intorn
ch	1	1	byte	Intern
dof	1	2	byte	Intern
alian	1	2	Dyte	Intern
allyl I	1	3		Intern
lu fla a	4	4	Integer	Dito. Fablersustand
nag	Z	8	DILS	Bilu: Fenierzusianu Biti, picht apgaschlasson
				Dit1: Ilicit digeschiossen Dit2: Eingengewert erreicht eheren Grenzwert
				Dit2: Eingangsweit erreicht unteren Grenzweit
				Bita: Eingangswert erreicht eheren Grenzwert
				Bit4: Messwert erreicht unteren Grenzwert
				Bits: Messwert erreicht unteren Grenzwert
				Bito: Messung Instabil Bita: Martung /Kalibriggung arfardarligh
				Dit/: Waitung/Kalibherung enoruen
ام من	4	10	las de a	Bit8: Einschaltverzogerung
KINU	T	10	byte	Art der Messung
				1: Freise Chler
				1: Freies Chior
				2: AKTIVCHIOF
				3: Gesamichion
				4: Chioramine
				5: Chloritdiovid
				10: Freies Brom
				11: AKUVDIOIII
				13. AFA 14: Ozon
				15: Gelöster Sauerstoff
				16: Nitrat
				17. PHMB
				18: Salzgehalt
				19. TDS
				20: Trübung
				21. Leitfähigkeit
				22: Temperatur
				23: Durchfluss
				24: pH
				25: Redox
				26: Chlorid
				27: Ammoniak
				28: Fluorid
				29: ISE
				30: Volumen
unit	1	11	byte	Maßeinheit
			-	0: Nicht zugewiesen
				1: Leer
				2: Dekade
				3: pH
				4: ppb
				5: ppm
				6: µg/l
				7: mg/l
				8: g/l
				9: %
				10: uS/cm ²

				11: mS/cm ²
				12: NTU
				13: FNU
				14: °K
				15: °C
				16: °F
				17: °R
				18: mA
				19: mV
				20: HZ
				22, 1115
				25: Set
				27. mm 25. h
				25.11
				20. T 27: m3
				28: 1/min
				29: I/h
				30° m3/h
				31: Imp/l
				32: Imp/m3
				33: Ohm
				34: mOhm
				35: Impuls
transducer	1	12	byte	Art des Wandlers:
				0: kein/e
				1: 020mA
				2: 420mA
				3: pH -> 420mA
				4: Redox -> 420mA
				5: pt100 -> 420mA
				6: Fluorid -> 420mA
				7: Fluorid (100) -> 420mA
				8: ISOCAP pH -> 420mA
				9: ISOCAP Redox -> 420mA
				10: UNISO P -> 420mA
				11: UNISO R1 -> 420mA
				12: UNISO R -> 420mA
				13: UNISO B -> 420mA
				14: 02000mV
				15: 02000MV
				16: (potentiometrisch) mv
				17: Puisirequenz
				10. PT100
alian	1	12		Intern
delav	2	14	short	Finschaltverzögerung () 5s
tick	2	16	short	Einschaltzeitzähler 0.5s
fault tick	1	10	byte	Enlerzeitzähler 0.55
alian	1	10	Dyte	Intern
min value	4	20	float	Linterer Skalenendwert
may value	т 4	20	float	Oherer Skalenendwert
	т 4	27	float	Nonnstailhait
cal_siope	т И	20	float	Offcot
cal_UIISEL	1 1	26	float	Clisci Stoigung vor Kalibriorung
std offect	1	40	float	Offect ver Kelibrierung
	4	40	noat	
2_dex	4	44		
	4	48 50	float	Schnittstellenwert
signal	4	52	TIOat	Sensorsignalwert
std_value	4	50	float	Messwert onne Kalibrierung
value	4	60	float	Messwert nach Kalibrierung
next	4	64		Intern

Beispiel:

Um die Maßeinheit des am Eingang IN1 angeschlossenen Sensors zu lesen, wird das Basisregister REG(42601) verwendet.

Der Offset von "unit" beträgt 11 Bytes. Der Register-Offset beträgt 11/2 = 5. Die Adresse des Registers zum Lesen von "unit" ist REG(42601+5) = REG(42606)

REG(42606) = 0x0205Die Datenblöcke sind little-endian-codiert, deshalb ist "Einheit" das kleinstwertige Byte 0x05. 0x05 = [ppm]

STRUCT (switch)

Dieser Datenblock enthält alle Zustände, Werte und Einstellungen der Schalter.

Bezeichnung	Größe [Bytes]	Offset [Bytes]	Тур	Beschreibung	
SW	1	0	byte	Intern	
ch	1	1	byte	Intern	
align	2	2		Intern	
fd	4	4	integer	Intern	
flag	1	8	bits	bit0: Schalter aktivieren Bit1: Schaltrichtung; NO=0; NC=1 Bit2: Intern Bit3: Zustand des Schalters; offen=0; geschlossen=1 Bit4: Einschaltverzögerung; offen=0; geschlossen= Bit5: aktiver Kontakt, in Abhängigkeit von Schaltrichtung und Verzögerung	
align	1	9		Intern	
delay	2	10	short	Entprellzeit, 1/2 s	
tick	2	12	short	Entprellzeit	
align	2	14		Intern	
next	4	16		Intern	

Beispiel:

Das Basisregister zum Lesen der Entprellzeit von Schalter K1 ist REG(42841).

Der Offset von "tick" beträgt 12 Bytes

Der Register-Offset beträgt 12/2 = 6.

Die Adresse des Registers zum Lesen von "tick" ist REG(42841+6) = REG(42847)

REG(42847) = 0x0A00

Die Datenblöcke sind little-endian-codiert, daher ist die Bytereihenfolge invertiert. Tick = 0x000A

Die Einheit "tick" beträgt $\frac{1}{2}$ Sekunden, daher ist die Entprellzeit $0xA \times 0.5s = 5s$.

STRUCT (relay) Dieser Datenblock enthält alle Zustände, Werte und Einstellungen der Relais.

Bezeichnung	Größe	Offset	Тур	Beschreibung
	[Bytes]	[Bytes]		_
rel	1	0	byte	Intern
ch	1	1	byte	Intern
align	2	2		Intern
fd	4	4	integer	Intern
flag	1	8	bits	bit[0~2]: Modus
				0 = deaktiviert
				1 = Dosierparameter
				2 = Parameteralarm
				3 = Geratealarm
				4 = Schaltzustand
				5 = Relaiszustand
				b = 1 imer
				Bita: Schaltrichtung NO=0; NC=1
				Bit4: Schalterzustand, offen=0;
				geschlossen=1 BitE: Altiverstand altiv 1
				Bits: Akuvzustanu, akuv=1
alian	2	0		Dito: Intern
align	3	9		Intern
/switch/relay	4	12		Intern
alarm.delay	1	16	integer	Relais-Schaltverzögerung bei Alarm
alarm.tick	1	17	integer	Verzögerungszeitzähler für anstehenden
			5-	Alarm
alarm.pending	1	18	bits	Bits für anstehende Alarme
				bit0: Es fließt kein Wasser
				Bit1: Messwert unterhalb des unteren
				Grenzwerts
				Bit2: Messwert oberhalb des oberen
				Grenzwerts
				Bit3: Sensor(en) nicht angeschlossen oder
				außernald des Messbereichs
				Bit4: Sensor außernald des Bereichs
				Bild: Oberdosis (Dosierzeit überschnitten
				Bit6: Sensor verzögert
alarm enable	1	19	hits	Bits für programmierte Alarme
didifficitable	-	15	0103	hitu: Durchflusserkennung
				Bit1: Unterer Alarmwert
				Bit2: Oberer Alarmwert
				Bit3: Sensorfehler
				Bit4: Sensor außerhalb des Bereichs
				Bit5: Überdosis
				Bit6: Verzögerung
dosage.u_min	4	20	float	
dosage.u_max	4	24	float	
dosage.u	4	28	float	Dosiersteuerung [1/1]
dosage.period	4	32	integer	Relais-Zyklusdauer
dosage.min_widtn	2	30	Integer	Mindestzeit für Anderung des Relaiszustands
diigii docago computo timo	2	38	 intogor	Intern
dosage.compute_time	т 4	44	integer	Intern
dosage ref time	4	48	integer	Intern
dosage.delav	4	52	integer	Intern
dosage.flag	1	56	bits	bits[0~1]: Modus
				0 = EIN/AUS
				1 = PWM
				2 = PFM
				Bit2: Dosierrichtung, 0=direkt; 1=invertiert

				Bit3: Intern
				bit[4~5]: Regelung
				0 = kein/e
				1 = direkt
				2 = invertiert
dosage.q_unit	1	57	bits	
align	2	58		Intern
timer.calendar.flag	1	60	bits	bit0: Timer läuft
				Bit1: Timerschaltung geplant
				Bit2: Timer pausiert
align	3	61		Intern
timer.calendar.event_list	4	64		Intern
timer.calendar.next	4	68		Intern
timer.action	1	72	bits	
align	3	73		Intern
delay_on	1	76	integer	
delay_off	1	77	integer	
tick_active	2	78	integer	
timer.handler	4	80		Intern
timer.proc	4	84		Intern
timer.delay	4	88	integer	
timer.trig_time	4	92	integer	
timer.next	4	96		Intern
next	4	100		Intern

Beispiel:

Um den aktiven Zustand des Relais P1 zu lesen, wird das Basisregister REG(P1 43001) verwendet.

Der Offset von "flag" beträgt 8 Bytes Der Register-Offset beträgt 8/2 = 4. Die Adresse des Registers zum Lesen von "flag" ist REG(43001+4) = REG(43005)

REG(43005) = 0x3500

Die Datenblöcke sind little-endian-codiert, deshalb ist das Flag-Byte das höchste Byte Flag = 0x35 = 0b00110110

Bit 5 = 1 zeigt den aktiven Zustand des Relais an; das Relais ist aktiv.

STRUCT (iout)

Dieser Datenblock enthält alle Zustände, Werte und Einstellungen der IOUTs (0/4...20mA-Stromausgänge).

Bezeichnung	Größe [Bytes]	Offset [Bytes]	Тур	Beschreibung
out	1	0	integer	Intern
ch	1	1	integer	Intern
align	2	2		Intern
param / sensor	4	4		Intern
fd	4	8	integer	Intern
flag	2	12	bits	bit0: Strombereich 0: 420mA 1: 020mA bit[1~2]: Fehlerstrom 0: 0mA 1: 0 oder 4mA, je nach Bereich 2: 2,6mA bit[3~4]: Sperrstrom 0: Keine Änderung 1: 0mA 2: 0 oder 4mA, je nach Bereich 3: 3,4mA bit[5~6]: Strom außerhalb des Bereichs 0: 21,7mA 1: 20 mA 2: 20,8mA Bit[7~9]: Modus 0: Wert Dosierparameter 1: Parameterregelung 2: Parametermessung 3: Sensormessung
				4: Sensorschnittstelle
				Bit10: Pause
alian	2	1/		DILLI: SLOPP
ally[]	<u>∠</u>	14	 float	Intern Moss oder Deglerwort der 0/4mA entenricht
point_0_4MA	4	70	float	Mess- oder Regierwert, der 20mA entspricht
pullit_2011A	7	20	float	Mess- ouer Regierwert, der ZumA entspricht
novt	Т И	24	nual	Ausyanysshon [maj
next	4	ZÕ		Intern

Beispiel:

Um den Strom des Ausgangs IOUT2 zu lesen, wird das Basisregister REG(P1 42921) verwendet.

Der Offset von "current" beträgt 28 Bytes Der Register-Offset beträgt 28/2 = 14. Die Adresse des Registers zum Lesen von "current" ist REG(42921+14) = REG(42935) und REG (42936)

REG(42935) = 0xA470 REG(42936) = 0x4541 Die Datenblöcke sind little-endian-codiert, daher beträgt der Wert 0x414570A4, 12,34 mA.

STRUCT (calendar) Dieser Datenblock enthält alle Zustände, Werte und Einstellungen der Kalender zum Verwalten von Timer-Ereignissen.

Bezeichnung	Größe [Bytes]	Offset [Bytes]	Тур	Beschreibung
calendar.flag	1	0	bits	Bit0: Kalender aktiviert Bit1: anstehende Ereignisse Bit2: gestoppt
align	3	1		Intern
calendar.event_list	4	4		Intern
calendar.next	4	8		Intern

STRUCT (calendar_event)

Bezeichnung	Größe [Bytes]	Offset [Bytes]	Тур	Beschreibung
name	8	0	string	
ev	1	8		
align	3	9		Intern
fd	4	12	integer	Intern
flag	2	16	bits	Aktive Tage Bit0: Montag Bit1: Dienstag Bit2: Mittwoch Bit3: Donnerstag Bit4: Freitag Bit5: Samstag Bit6: Sonntag Bit7: intern Bit8: aktiv Bit9: anstehend
align	2	18		Intern
date_start	4	20	integer	Datum und Uhrzeit Ereignisstart
date_end	4	24	integer	Datum und Uhrzeit Ereignisende
interval	1	28	integer	Anzahl Wochen bis Ereigniswiederholung
align	3	29		Intern
next	4	32		Intern

DOSATRONIC GmbH | Zuppingerstraße 8 | 88213 Ravensburg ^(m): +49-(0)7 51 - 2 95 12 -0 | ^(m): +49-(0)7 51 - 2 95 12 -190 info@dosatronic.de | www.dosatronic.de

Kommunikationsanleitung